От Игорь С. Ответить на сообщение
К Игорь Ответить по почте
Дата 22.09.2005 19:19:46 Найти в дереве
Рубрики Россия-СССР; Катастрофа; Версия для печати

Все же

можно поинтересоваться источником ваших знаний об аксиоматическом методе?

>>Блин. Уволить к чертовой матери всех прохвессоров мехмата МГУ!!!!. Назначить вместо них моего тезку.

>>Объясняю: в математике ( например в геометрии) аксиомы - набор утверждений, связывающих понятия между собой. При этом под понятиями может понимать все, что угодно, лишь бы между ними выполнялись соотношения.

>Аксиомы - это изначальные понятия, принимаемые без доказательств. Появились они для того, чтобы разложить уже имеющиеся сложные понятия на минимум простых. Необходимый минимальный набор аксиом из которого логически строятся все другие понятия данной системы и составляет недоказуемый аксиоматический базис данной геометрии или алгебры.

Вы описываете то, как аксиоматический метод (причем в понимании Эвклида) излагается в курсе школьной математики ( по крайней мере у меня создается такое впечатление). Вы что либо более серьезное читали по данному вопросу? (Вопрос в том, что я как-то затрудняюсь определить, вы отвергаете потому что просто не знаете некоторых вещей, или наоборот, знаете очень много)

Ведь "максимальнго простые понятия" тоже надо как-то описать. Или вы считаете их "интуитивно понятными"? Вы полную аксиоматику эвклидовой геометрии помните? Они была одно время в приложении к школьному учебнику. Там начиналось с понятий "больше", "содержит", "совпадает"....

>>Они называются "прямой" и "плоскостью".
>С таким же успехом могли быть названы как-нибудь иначе.

Но они названы так, а не иначе. Они названы так, чтобы их названия согласовывались с названием аналогичных объектов в эвклидовой геометрии.

> А то, что утверждения будто Евклидова геометрия якобы является частным случаем геометрии Лобачевского, как тут утверждал уважаемый медик по образованию, мягко говоря неадекватные.

Вы будете удивлены, но в данном случае медик абсолютно прав. В геометриях Лобачевского есть понятие радиус кривизны пространства Лобачевского. Если он стремится к бесконечности, то получаем эвклидову геометрию.

"Евклидова геометрия может быть получена как предельный случай геометрии Лобачесвкого". Я чувствую, вы мне не верите, поэтому сошлюсь на эту цитату из "Математической энциклопедии"

>С таким же успехом можно рассматривать все посторения геометрии Лобачевского в базисе геометрии Евклида.

Что значит "в базисе"? Это вы так [i]интерпретации [/i] решили назвать?

>Там они будут представляться, как описания кривых линий, и кривых поверхностей и пр. Другое дело, что базис евклидовой геометрии в качестве описательной системы является для "кривых" геометрий довольно громоздким.

Ситуация все же несимметрична.