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ABSTRACT

This thesis explores the validation of Lanchester equations as models of the
attrition process for the Battle of Kursk in World War I1. The methodology and results of
this study extend previous validation efforts undertaken since the development of the
Ardennes Campaign Simulation Data Base (ACSDB) in 1989 and the Kursk Data Base
(KDB) in 1996. The KDB is a computerized database developed by the Dupuy Institute
and the Center for Army Analysis from military archives in Germany and Russia. The
data are two-sided, time-phased (daily), highly detailed, and encompass 15 days of the
campaign. The primary areas of analysis are the effect of using purely engaged forcesin
parameter edimation and the effect of force weighting in forming homogeneous force
strengths. Based on the numbers of personnel, tanks, armored personnel carriers, and
artillery, three different data sets were constructed: all combat forces in the campaign,
combat forces within contact that are both engaged and not engaged, and combat forces
within contact that are engaged. In addition, a weight optimization program using a
steepest ascent algorithm was developed and utilized. Findings indicate that Lanchester-
based models provide a considerably better fit for data sets composed only of forces that
are actively engaged. Also, Lanchester’s linear model appears to provide the best fit to
the Battle of Kursk data. Finally, optimization of force weights does not significantly

improve the fit of Lanchester models.
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EXECUTIVE SUMMARY

Since the dramatic growth of operations research during and after World War |1,
modeling of combat at both the tactical and strategic level has grown dramatically. One
complicated characteristic of most combat models is the representation of the decrease in
force levels over time, commonly referred to as attrition. 1n an effort to accurately model
the attrition process, many combat models employ Lanchester-type equations.
Fortunately, the development of the Ardennes Campaign Simulation Data Base (ACSDB)
in 1989 and the Kursk Data Base (KDB) in 1996 has enabled more analysis concerning
the empirical validation of Lanchester equations. The purpose of this study is to explore
the validation of Lanchester equations as they model the attrition process of the Battle of
Kursk in World War 11. In particular, this thesis focuses on the effect of using purely
engaged forces in parameter estimation and the effect of force weighting in forming

homogeneous force strengths.

The general form of the Lanchester modd is:
B (D) = aR(t)’B(1)",

R (t) = bB(Y)PR(t)",

where B(t) and R(t) are the strengths of blue and red forces at time't, B (t) and  (t) are the
rates at which blue forces and red forces are killed a time t, a and b are attrition
parameters, p is the exponent parameter of the attacking Prce, and q is the exponent
parameter of the defending force. Three specific variations of these equations are of
particular interest due to their simplicity and intuitive results. First, the Lanchester linear

model existsswhen p=q = 1. In this case, the casualty rate of a force is proportional to
Xvil



the product of its force size and the enemy’s force size. Next, the Lanchester square
model existswhen p=1and g = 0. Here, the casualty rate of aforce is proportional only
to the enemy force size. Findly, the logarithmic model exissswhen p=0and g=1 and
describes a situation when the casualty rate is only proportional to one’'s own force size

and not the enemy’s.

In previous studies concerning the validation of Lanchester equations with
historical data, the authors make no distinction between those forces that are actually
engaged and those that are not engaged. However, the KDB does delineate between all
combat units, all combat units within contact but not engaged, and all combat units within
contact and engaged. Quite possibly, Lanchester equations may prove more applicable to
one of these data types than the others. This result could prove useful in determining

how combat simulations that use L anchester-based equations are best utilized.

In order to conduct this analysis, three separate data sets were constructed from
the KDB. These data sets divide the KDB into three inclusive categories: all combat unit
data (ACUD), combat unit data for those units that are within contact (CCUD), and
combat unit data for only those units that are actualy fighting (FCUD). Each of these
data sets was analyzed using three different techniques. The first two techniques consist
of the application of previous methodologies used by Bracken [Ref. 4] in his analysis of
the Ardennes Campaign and by Turkes [Ref. 2] in his analysis of the Battle of Kursk.
Bracken's technique involved delineating a range of values for each parameter and
searching on a discrete grid over this range for the set of parameters resulting in lowest
sum of squared residuals when compared to the actual data. Turkes modeled his

technique after a method developed by Fricker. [Ref. 5] This process consists of using
XViii



linear regression on logarithmically transformed data to estimate the unknown
parameters. Each of these models was applied to the ACUD, CCUD, and FCUD data

sats to determine which set resulted in a better fit.

The final area of analysis explores the area of force weighting and its affect on a
model’s fit. Force weighting is often utilized to combine differing force types into a
homogeneous force level. This is accomplished by multiplying the actual size of each
force type by an appropriate weighting parameter and summing for each day. In this
analysis, personnel, tanks, armored personnel carriers, and artillery were combined to
produce a homogeneous level of force strength. However, no common methodology or
rigorous criteria exists for determining the weighting parameters of each force type. The
selection of these weights may actually have a considerable impact on the mode!’s fit to

the actual data.

In order to determine the ideal weights, a weight optimization agorithm was
developed and applied to each of the three data sets. This algorithm consists of a steepest
ascent search combined with linear regression on the logarithmically transformed
variables to determine the weights that result in the best fit of the model. This procedure
was aso applied to Lanchester’s square, linear, and logarithmic models, as well as to the

ACUD data from the Ardennes campaign.

The results of this thesis indicate that Lanchester-based models provide a
considerably better fit for data sets composed only of forces that are actively engaged.
As shown in Figure 1, each of the models described above performs best when applied

only to the fighting unit data. Use of the contact unit data resulted in the worst fitting

Xix



model. This result suggests that Lanchester-type models more accurately predict combat

losses in cases where only fully engaged forces are considered.

R-Squared Comparison

0.7
0.6 1
0.5

047 B All Units

0.3 Contact Units
0.2 0O Fighting Units

S . .

-0.1- Bracken Method Turkes Method Optimized Weights
Modd Type

R-Squared

Figure 1. Comparison of R vaues for three separate models. A higher R value
indicates a better fit to the actual data.

Another significant finding resulted from the direct application of Lanchester’s
square, linear, and logarithmic equations. Of all models investigated in this thesis,
Lanchester’s linear model provides the best fit to the Battle of Kursk data. This is a
significant finding and represents one of the few cases in which one of Lanchester’s basic
models was found to apply to an actual battle using highly aggregated data. Thisimplies
that a force's casuaties were a function of both friendly and enemy force levels for
engaged forces during the Battle of Kursk. The resulting parameters and R values for
each model when applied to the fighting unit data are shown in Table 1. As noted earlier,

use of the fighting unit data resulted in the best fit for each mode.

XX



Method a b p q R2
Bracken 1.20E-08 | 8.00E-09 1.7 05 0.3809
Turkes 1376-08 | 2.49E-09 0.5694 1.6919 05541
Optimized Weights | 6.04E-08 | 1.31E-08 0.5286 1.5858 05734
Optimized Weights | 5 19F07 | 607E-08 1 1 0.6187
(Linear Law)
Optimized Weights | 5 300 05 | 1 42E-02 1 0 0.2924
(SquareLaw)
Optimized Weights | 5 5 05 | 1.27E-02 0 1 05375
(Log Law)

Table 1. Resulting parameter values for each model when applied to fighting unit data.

Finally, the optimization of force weights produced mixed results. The resulting
weights from the weight optimization process for the CCUD and FCUD data imply that
tanks were the dominant source of combat power during the Battle of Kursk. This
supports the commonly held historical opinion that the conflict was largely defined by
tank battles. However, the optimization of force weights does not significantly improve
the fit of Lanchester models. Although the use of optimal weights does increase the
performance of the model in most cases, this improvement is often minimal or mitigated
by weights that do not make intuitive sense.  For instance, the best fit discovered in this
analysis was with al weights set equal to one and resulted in an R of 0.6187. If the
weights are switched to Bracken's weights and the a, b, p, and q parameters remain the
same, the R value decreases only slightly to 0.5513. Therefore, the practice of assigning

weights based on intuitive judgment seems to be somewhat justified.
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l. INTRODUCTION

A. OVERVIEW

Since the dramatic growth of operations research during and after World War |1,
the United States military has used various forms of modeling to study complex
processes. In particular, modeling of combat at both the tactical and strategic level has
grown dramatically with the advent of increased computing power. One complicated
characteristic of most combat models is the representation of the decrease in force levels
over time, commonly referred to as attrition. In an effort to accurately model the attrition
process, many combat models employ Lanchester-type equations. However, due to a
serious deficiency in the quality of historical data, empirical validation of Lanchester
equations in modeling attrition has been sorely lacking. Fortunately, the development of
the Ardennes Campaign Simulation Data Base (ACSDB) in 1989 and the Kursk Data
Base (KDB) in 1996 has enabled more analysis in this area. The purpose of this study is
to explore the validation of Lanchester equations as they model the attrition process of
the Battle of Kursk in World War Il. In particular, this thesis focuses on the effect of
using purely engaged forces in parameter estimation and the effect of force weighting in
forming homogeneous force strengths. The information gained from this analysis may
offer important insight in determining how combat simulations that use Lanchester-based

equations are best utilized.



B. BACKGROUND

1 Lanchester Equations

In 1914, F. W. Lanchester proposed a set of differential equations in order to
quantitatively justify the importance of concentration on the modern battlefield. [Ref. 1]
Lanchester believed that ancient combat consisted of a series of “one on one” duels
between individual soldiers. Therefore, the combatants' force levels had no effect on the
exchange ratio. However, in modern combat, forces have the capability of aiming fire
from different locations onto a single target. In this case, each side's casualty rate 5
proportional to the number of enemy firers, and an obvious advantage exists in

concentrating fires.

The general form of the Lanchester model is:
B (t) = aR(t)"B(t)", (1.1)
R (t) = bB(t)PR(t)", (1.2)

where B(t) and R(t) are the strengths of blue and red forces at time t, B (t) and  (t) are the
rates at which blue forces and red forces are killed at time t, a and b are attrition
parameters, p is the exponent parameter of the attacking force, and q is the exponent
parameter of the defending force. Initial force sizes are represented by B(0) and R(0)
and, when numerically calculated with time step ?t, are incrementally decreased as
follows: B(t+ ?t) = B(t) — ?tB (t) and R(t + ?2t) = R(t) — ?t R (t). Lanchester reasoned
that two forces are of equal strength when their force ratio remains the same throughout
the battle. Therefore, B(t) / R(t) = B (t) / R (t), for al t. This result is equivalent to the

condition that bB(t)” *! = aR(t)*%** for somep and g, and all t. [Ref. 2]
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Three specific variations of these equations are of particular interest due to their
simplicity and intuitive results. First, the Lanchester linear model existswhen p=q=1.
In this case, the casualty rate of aforce is proportional to the product of its force size and
the enemy’s force size. Commonly referred to as “area fire,” Lanchester hypothesized
that this model represented a situation when firing is directed over a general area without
being aimed at specific targets. Next, the Lanchester square model exists when p =1
and q = 0. Here, the casualty rate of aforceis proportional only to the enemy force size.
According to Lanchester, this condition should govern modern combat situations where
several elements of one combatant can be aimed and concentrated on specific enemy
targets. These situations are commonly referred to as “aimed fire” Finaly, the
logarithmic model exists when p = 0 and g = 1 and describes a situation when the
casualty rate is only proportional to one's own force size and not the enemy’s. This
result seems counter-intuitive and was not theorized by Lanchester. However, it does
represent the fact that not all attrition is due to enemy fire. A logarithmic result could
represent a situation where the primary causes of casualties were disease, desertion, or

other non-battle losses. [Ref. 6]
2. Previous Studies

Previous studies concerning the validation of Lanchester equations using
historical data have been limited due to the absence of quality data sets. Of particular
interest are those that use data organized by daily force size. Studies by Engel on the Iwo
Jima campaign in World War Il [Ref. 16], Hartley and Helmbold on the InchonSeoul

campaign of the Korean War [Ref. 3], Bracken on the Ardennes campaign of World War



Il [Ref. 4], Fricker on the Ardennes campaign [Ref. 5], and Turkes on the Battle of Kursk

[Ref. 2] are among the few empirical validation efforts that use daily force size data.
a. Engel’s Study

Engel conducted the first study using time-phased data to validate
Lanchester’s square law equation. [Ref. 11][Ref. 16] His data set consisted of the daily
force strengths of U.S. forces and beginning and ending force strengths for Japanese
forces. Engel found that the square law was a reasonable model of daily U.S. attrition
and total Japanese attrition. However, he aso concluded that other Lanchester
formulations could fit the data, and he offered no goodness of fit measure for his mode.

[Ref.3]
b. Hartley and Helmbold’' s Study

Hartley and Helmbold utilized linear regression to test whether the
Lanchester square model applied to the InchonSeoul campaign of the Korean War.
Their data set consisted of manpower only, and they attempted to model just United
States casualties. In addition, they introduced the use of change points at certain phases
in the campaign and then refit the model at each of these change points. They concluded
the following: (1) the data do not fit a constant coefficient Lanchester square law, (2) the
data better fit a set of three separate battles (one distinct battle every six or seven days),
(3) the Lanchester square model is not a proven attrition algorithm for warfare, but
neither can it be completely discounted, and (4) more two-sided, time-phased data are

needed to validate any proposed attrition law.



C. Bracken’s Study

Bracken developed four separate models for the Ardennes campaign and
determined the parameters for each model that resulted in the best fit to the actual data.
Due to the varying levels of 