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INTRODUCTION

This paper describes our search for less sensitive materials for add-on armors of light
combat vehicles against shaped charge threats. The protection power of unique sandwich
systems consisting of steel flyer plates and inert interlayers like rubber against shaped
charge jets is rather small. A more effective sandwich armor is explosive reactive armor
(ERA), in which the interlayer consists of an explosive thus giving rise to danger for the
crew of the combat vehicle and the surrounding of the vehicle due to the flying plates and
blast, which can be vented upwards. To avoid the disadvantages of the two mentioned
types of sandwich armors, we were looking for an interlayer material which is more effec-
tive than an inert substance and less sensitive than a pure high explosive. In the following
we will refer to this kind of armor as reactive armor (RA). The basic material of our inves-
tigations was the energetic binder glycidyl azide polymer (GAP). The physical and che-
mical properties of GAP reported in personal communication [1] and literature [2], [3]
made it a hopeful candidate for our purpose. Various mixtures of GAP and other materials
have been tested. It turned out that, for the use as interlayer material in reactive armor
sandwiches, it is necessary that there is some content of a high energetic material like
RDX in the mixture in order to get an armor with a sufficiently high protection power. 

For the protection of fighting vehicles against shaped charge threats their basic
armor can be reinforced by additional sandwiches of metal plates with inert or
energetic interlayers. The best protection is achieved by using explosives as
interlayer, but because of psychological reasons and safety considerations an
inert interlayer may be preferred. The disadvantage of inert interlayers is a less
effective protection capability. This paper shows how to find a compromise.
Sandwiches with interlayers consisting of rubber, mixtures of the energetic bin-
der GAP and combinations of these materials with small amounts of high ex-
plosive were investigated. Flash X-ray pictures show the interaction between a
medium caliber shaped charge jet and sandwiches with different kinds of inter-
layers as well as the disturbance of the jet behind these sandwiches which cor-
relates with the penetration of the jet into the armor behind the sandwich.
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EXPERIMENTAL SET UP AND SHAPED CHARGE

The experimental set up for testing the protection capability of reactive armor sandwi-
ches with various kinds of interlayer materials is shown in figure 1. For the tests medium
caliber shaped charges were fired against inclined sandwiches which consisted of two 
2 mm thick mild steel flyer plates and an intermediate 8 to 12 mm thick layer of the mate-
rial or combination of materials to be tested. The sandwiches had a lateral size of 200 mm
× 50 mm. The firings were done at a standoff distance of 2 calibers and the angle of incli-
nation of the sandwich targets was 60 degrees. 

Figure 1: Experimental set up.

The protection performance of the targets was evaluated by measuring the residual
penetration of the shaped charge jet into a witness of C 60 steel (hardness 230 HV 10)
placed 50 mm behind the target. In addition, the penetrating jet was photographed by
means of a four channel flash-X-ray equipment with an output power of 450 kV. Thus the
disturbance of the jet behind the sandwich and the interaction between the jet and the flyer
plates of the sandwich could be visualized. 

The 73 mm shaped charge employs a conical copper liner with a 60° apex angle and
an apex diameter of 64 mm. Its wall thickness is 1.5 mm. The tip velocity of the shaped
charge jet was 8.1 km/s and its reference penetration depth into C 60 steel at a standoff of
2 calibers was measured to be 362 mm.

Tested Interlayer Compositions

As already mentioned above the test vehicles of our search for an effective reactive ar-
mor material were sandwiches of the type 2 mm steel / X / 2 mm steel, X being the inter-
layer to be tested. When such a sandwich structure is hit by a shaped charge jet the steel
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plates, often called flyer plates, are forced to move across the path of the jet thus disturb-
ing it. In case of an inert interlayer the plate motion is caused by the elastic pressure trans-
ferred into the interlayer by the jet. Then the plate motion is only a bulging of the plates. If
the interlayer is a high energetic material the plates are driven apart by a detonation and
they are forced really to fly. In case of a less energetic interlayer both bulging and flying
of the sandwich plates, the latter caused by a chemical reaction with an accompanying gas
production, may become important for the distortion of shaped charge jets. 

The tested mixtures of GAP are included in the list below.

– GAP = Glycidyl azide polymer + Desmodur N 100
– GAP + CaCO3
– GAP + GZT (GZT = Guanidinazotetrazolat)
– GAP + 20% RDX
– GAP + 70% RDX

All of these mixtures were prepared by the Fraunhofer-Institut für Chemische Techno-
logie (ICT), Pfinztal, Germany.

Because pure GAP is a liquid with an oily consistency for our purpose it was hardened
with the hardening agent Desmodur N 100. In the following GAP + Desmodur is simply
called GAP. Its density was ρ=1.27 g/cm3. The densities of the other mixtures were
ρ=1.03 g/cm3 (GAP + CaCO3 and GAP + 20% RDX) and ρ=0.97 g/cm3 (GAP + GZT and
GAP + 70% RDX). All mixtures had the consistency of soft rubber and could be cut with
a sharp knife. The thickness of the interlayers built of these mixtures was 10 mm. 

Furthermore experiments with combined interlayers of an 8 mm thick rubber or 
10 mm thick GAP layer and an additional 1–2 mm thick layer of the high explosive Dotti-
kon were carried out. Dottikon is a composition of 85% PETN and 15% binder. Its den-
sity is 1.4 g/cm3 and its detonation velocity is about 7000 m/s. At the experiments with
two intermediate layers the Dottikon layer was directed towards the shaped charge. 

At our very first experiments sandwiches with 8 mm thick rubber interlayers (Perbu-
nan, density ρ=1.45 g/cm3) were tested. These sandwiches with a fully inert interlayer
served as a standard target for the evaluation of the later tested sandwich armors.

EXPERIMENTAL RESULTS

The two channel flash X-ray photographs of Figure 2 show the interaction of a shaped
charge jet with armor sandwiches containing interlayers of a very low density foam
(thickness 10 mm), rubber and GAP, respectively. Each photograph was taken 100 µs and
120 µs after charge ignition.
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Figure 2: Interaction of a shaped charge jet with sandwiches containing foam-, rubber-
and GAP interlayers.

The foam sandwich is penetrated by the jet without any bulging of the flyer plates and
with almost no distortion of the jet behind them. However, the jet tip velocity is reduced
from 8100 m/s in front of the target to 6200 m/s behind the target. This is due to material
erosion at the jet at the beginning of the penetration process. In cases of rubber and GAP a
strong bulging of the flyer plates can be observed. However, the jet disturbance caused by
the bulging is very small at rubber as well as at GAP. The energetic Material GAP re-
sponds in the same manner to jet impact like the inert material rubber. This means that a
shaped charge jet cannot ignite GAP or that an reaction immediately stops after ignition. 

Figure 3 shows for the above mentioned sandwich systems the total penetration depth
Pm of the shaped charge jet into the overall target, consisting of the sandwich and the steel
witness behind it, versus the interlayer material. Pm can be called steel mass equivalent
penetration depth, because for the determination of Pm the thickness of each perforated
target layer was converted into the thickness of a steel layer with the same areal density.
The left bar of figure three corresponds to the reference penetration of the used shaped
charge into a semi-infinite steel target. The other Pm values of figure 3 reflect the degree
of jet distortion that can be observed in Figure 2. By the sandwich with the foam interlayer
the penetration depth is reduced by only 11% with respect to the reference value. With
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GAP there is reached the same protection capability as with rubber. In both cases the re-
duction of penetration depth compared to the reference value is about 22%. The reference
penetration depth Pm, Ref. divided by Pm gives the so called mass effectiveness factor Em
which is a direct measure of the protection capability of a reactive armor. For reactive ar-
mors with sandwiches containing rubber or GAP interlayers we got an Em-value of 1.29.
This value is much smaller than that of a typical explosive reactive armor, being in the
range of 5 to 10.

Figure 3: Penetration depth Pm versus various interlayer materials.

Because of the insufficient protection power attained with simple GAP + Desmodur
next we tested mixtures of GAP with CaCO3 and GAP with GZT. In the former mixture
the reactivity should be enhanced by the generation of air bubbles within the mixture and
in the latter one by adding a second energetic material. It was not much a success as it can
be seen from Figure 4 where the result of this and the following experiments are summari-
zed. With respect to rubber or GAP the total penetration depth Pm is reduced by only 
8.5 % in both cases, GAP + CaCO3 and GAP + GZT. The corresponding Em-factors were
to be about 1.4.

The experiments with combined interlayers of rubber or GAP and an additional 
1–2 mm thin layer of the high explosive Dottikon showed that GAP can be forced to
undergo a chemical reaction by a high explosive nearby and that therefore GAP + Dottikon
gives a stronger reaction than rubber + Dottikon. Figure 4 shows that a GAP layer together
with a 2 mm thick Dottikon layer leads to a 23% smaller Pm value than a rubber layer
together with a 2 mm thick Dottikon layer. 
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Figure 4: Penetration depth Pm versus type of reactive armor.

To avoid the use of a pure high explosive in a reactive armor interlayer it now seemed
reasonable to test homogeneous mixtures of GAP and a high explosive. We chose RDX as
high explosive and carried out experiments with reactive armor sandwiches containing
interlayers of GAP + 20% RDX and GAP + 70% RDX. With these mixtures reductions of
penetration depth of 30% and 57% compared to rubber could be reached (see Fig. 4). The
corresponding Em-values can be calculated to be 1.8 and 3.0, respectively. 

The flash X-ray photographs of figure 5 show the interactions of the shaped charge jet
with reactive sandwiches filled with GAP + GZT, GAP + 20% RDX and GAP + 70%
RDX and the jet disturbance behind the sandwiches. At GAP + GZT the flyer plates
strongly bulge apart due to high pressures created in the interlayer by the very fast impact
of the shaped charge jet. The jet disturbance is almost as small as at GAP + Desmodur. In
case of GAP + 20% RDX the jet disturbance becomes much greater. This is due to the ef-
fect, that now the flyer plates not only bulge apart but even fly apart because of the energy
released in the energetic composite material. The jet disturbance is still enhanced by using
70% RDX instead of 20% RDX as can be clearly seen in the last photo of Figure 5. 
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Figure 5: Interaction of a shaped charge jet with sandwiches containing GAP + GZT,
GAP + 20% RDX and GAP + 70% RDX.

To be able to evaluate the potential danger arising from reactive armor containing
mixtures of GAP and RDX by [4] sensitivity measurements were performed. It was found
that the values of impact sensitivity and friction sensitivity are 10 Nm and 360 N for GAP
+ 20% RDX and 5 Nm and 168 N for GAP + 70% RDX. The former values are not but the
latter values are values of typical high explosives (see [5] e.g.). 

However, comparison of the penetration depth Pm behind a sandwich containing a 
10 mm thick layer of GAP + 70% RDX with Pm behind a sandwich containing a 7 mm
thick layer of pure high explosive PETN (see the two right bars of Fig. 4) indicates that the
brisance even of the 70% RDX mixture seems to be much smaller than that of a pure high
explosive. For a concluding evaluation of the danger potential it must be still investigated
how sensitive GAP + RDX mixtures are with respect to heat and shock.
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CONCLUSION

Mixtures of GAP and RDX seem to offer a suitable and adjustable material for reac-
tive armors against shaped charge threats. Their reactivity at impact of a shaped charge jet
can be controlled by the fraction of RDX in the composite mixture. By refining the geo-
metrical construction of the sandwich system and the chemical composition of the inter-
layer material reactive armor based on sandwiches with GAP + RDX interlayers may be-
come an effective means for the protection of light armored combat vehicles.
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