От Андю Ответить на сообщение
К Г.С.
Дата 15.12.2017 11:10:22 Найти в дереве
Рубрики Космос; Версия для печати

Наука, даже такая примитивная, как радиационная защита, не стоит (+)

Здравствуйте,

на месте. И материалы придумываются и даже методы.

>...(давно отстал от этой тематики), что при полетах на Луну астронавты сообщали о визуально наблюдаемых световых вспышках. Тогда это списали на воздействие релятивистских ядер то ли на рецепторы, то ли на мозг. А повреждения от релятивистских ядер серьезные, их и фиксировали пластиковыми пленками, на которых протравливали поврежденные места.

In space, astronauts are exposed to protons and high-Z high-energy (HZE) ions together with secondary radiation, including neutrons and recoil nuclei, which are produced by nuclear reactions in spacecraft or tissue.

Whole body doses of 1 to 2 mSv/day accumulate in interplanetary space, and approximately half of this value accumulates on planetary surfaces (Cucinotta et al., 2006; NCRP, 2006). Radiation shielding is an effective
countermeasure for solar particle events (SPEs), which are chiefly made up of protons with energies that are largely below a few hundred MeV. The intermediate dose-rates (<500 mSv/hour) and scarcity of data on the biological effectiveness of protons as compared to low-LET radiation make optimization of SPE shielding uncertain at this time, however.

The energy spectrum of galactic cosmic rays (GCRs) peaks near 1,000 MeV/
nucleon; consequently, these particles are so penetrating that shielding can only partially reduce the doses that are absorbed by the crew (Cucinotta et al., 2006). Thick shielding poses obvious mass problems to spacecraft
launch systems, and would only reduce the GCR effective dose by no more than 25% using aluminum, or about 35% using more efficient polyethylene.

Therefore, with the exception of solar proton events, which are effectively
absorbed by shielding, current shielding approaches cannot be considered a solution for the space radiation problem (Cucinotta et al., 2006; Wilson et al., 1995). In traveling to Mars, every cell nucleus within an astronaut
would be traversed by a proton or secondary electron every few days, and by an HZE ion every few months (Cucinotta et al., 1998b). The large ionization power of HZE ions makes them the major contributor to the risk, in spite of their lower cell nucleus hit frequency compared to protons.

В принципе, создание локального магнитного поля на корабле может "отпугивать" ионы. От гаммы, да, защититься сложнее, но, как я понимаю, высокоэнергетического гамма-излучения на корабле (кроме наведённого "тяжёлыми" частицами вплоть до электронов) быть больше, чем на Земле, не должно.

Всего хорошего, Андрей.