>>>>;)) А с какого перепою я бы Вам в качестве примера гиперболу приводил, если бы не догадывался? Типичная разрывная функция для непрерывного аргумента.
>>>
>>>Функция 1/x для значения x = 0 не определена.
>>Конечно. Теперь Вам, надеюсь, понятно, что такое неопределенность функции и чем она отличается от не заданности?
>
>Во-первых, гипербола - это кривая, а не функция.
Это в каноническом виде кривая, а 1/x - функция.
> Во-вторых, функция 1/x не является "типичной разрывной функцией для непрерывного аргумента", так как для x=0 она не определена.
Ну и что? Аргумент то непрерывный. x=0 существует, это функция не определена.
>Ну и что? Аргумент то непрерывный. x=0 существует, это функция не определена.
Для данной функции аргумента x=0 не существует. Она определена для всех x != 0.
Вообще говоря можно задать для функции произвольную область определения, это полностью допустимо. Например, если дана функция y = x, определённая только для целых x, то она разрывная.
>>Ну и что? Аргумент то непрерывный. x=0 существует, это функция не определена.
>
>Для данной функции аргумента x=0 не существует. Она определена для всех x != 0.
Ну как-бы все-таки функция для аргумента, а не аргумент для функции, а так да, в область определения, конечно, не входит.
>Вообще говоря можно задать для функции произвольную область определения, это полностью допустимо. Например, если дана функция y = x, определённая только для целых x, то она разрывная.
Разумеется.