От miron Ответить на сообщение
К miron
Дата 11.06.2013 16:02:16 Найти в дереве
Рубрики Россия-СССР; Образы будущего; Ограничения; Война и мир; Версия для печати

Наиболее интересные открытия Лысенко

ОТКРЫТИЯ ЛЫСЕНКО

С. Миронин

Сразу скажу, что Лысенко генетику знал и не отрицал, по крайней мере в рамках, которые находятся вне так называемых законов Менделя. В 1938 году, выступая на дискуссии, посвященной генетике, Лысенко так обозначиол практическую направленность советской науки: “…напрасно товарищи менделисты заявляют, что нами исповедуется закрытие генетики. … Я согласен взять от менделизма все, что брал из него И.В. Мичурин. А он-то, насколько я понимаю суть учения Мичурина, для дела из менделизма ничего не брал. …Только та теория, которая помогает тебе в практическом решении взятых или порученных заданий, приобретает право на научный авторитет. Мичуринское учение мне всегда помогало во всех моих научных работах. Менделизм и морганизм не только не помогали, но нередко мешали. Вот почему для меня учение Мичурина является колоссальным авторитетом в агробиологии, а учение Менделя и Моргана иначе, как ложным, я назвать не могу» (76)

Среди важнейших НАУЧНЫХ открытий Лысенко следует отметить следующие: 1) доказательство стадийности развития растений, 2) низкотемпературный мутагенез, 3) химико–биологический мутагенез или внегенетическое наследование, 4) доказательство скачкообразности видообразования, 5) открытие усреднения генотипа для вида.

Среди них я бы выделил два открытия: разработку теории стадийности развития растений и низкотемпературного мутагенеза и открытие механизмов вегетативной гибридизации, то есть по сути опередил время и доказал наличие внегенетической передачи наследуемых признаков.

Глущенко писал (30):”Кратко существо теории (стадийного развития – С.М.) можно передать в следующих словах:
1. Растения в разные периоды своего онтогенетического развития требуют неодинаковых внешних условий. Эта потребность в разнородных условиях говорит за то, что жизнь растений состоит из отдельных этапов — стадий развития (стадии: яровизации, световая и др.).
2. Стадии развития — это качественно переломные этапы в жизни растения. Они характерны и обусловлены прежде всего сменой требований растений к условиям внешней среды.
3. Требование определённых условий, а также их смена в процессе онтогенеза обусловлены всей предыдущей родовой, видовой и сортовой историей.
4. Рост растения и его развитие — явления не тождественные. Рост есть увеличение массы растения, его отдельных органов и частей. Свойство роста, в зависимости от течения стадийных процессов, может быть выражено в различной степени.
5. Внешние условия, необходимые растению для прохождения той или иной стадии развития и для роста, происходящего на той Же стадии развития, могут не совпадать. Потому-то часто можно наблюдать: быстрый рост данного растения и медленное его развитие, медленный рост растения и ускоренное его развитие, быстрый рост растения и быстрое его развитие.
6. Скорость прохождения растением стадии не зависит от размера и возраста растений. Она зависит только от наследственности растения и условий внешней среды.
7. Для прохождения растением стадий развития требуются не отдельные внешние факторы, а их комплекс, компоненты которого определяются природными свойствами растений. Каждая стадия требует своих комплексных условий.
8. В развитии растения существует строгая последовательность в прохождении отдельных стадий. Каждая последующая стадия наступает после завершения предыдущей.
9. Стадийные процессы, происходящие в растении или в отдельных его частях, органах, необратимы.
10. Стадийные изменения происходят в точках роста стебля и посредством деления клеток передаются всем вновь образующимся из них клеткам”.

Да! Лысенко сделал действительно выдающееся открытие в биологии – создал теорию стадийного развития растений. И этим открытием до сих пор пользуются все селекционеры, определения понятий роста и развития, разработанные Лысенко, стали классическими. С помощью этой теории сам Лысенко сначала создал агротехнический прием яровизации, который имел громадное значение в условиях, когда страна еще не имела высокоурожайных сортов яровых культур. Достаточно сказать, что под яровизированные посевы было отведено к 1941 году до 14 млн. га. В 1940 г. яровизация дала 15 млн. центнеров дополнительного урожая.

Между прочим, в 1933 году еще числящийся в великих ботаниках Н. Вавилов, тогда президент ВАСХНИЛ, представил это открытие Лысенко на соискание Сталинской премии, назвав его «крупнейшим достижением в области физиологии растений за последнее десятилетие». Это открытие Лысенко было доложено Вавиловым и на международном симпозиуме по проблемам генетики и селекции в США в 1933 г. Да, Вавилов не гнушался в те годы примазаться к научной славе Лысенко.

Если обратиться к книге “Вечное движение” академика Н.П.Дубинина (38), бывшего на заре застойных лет директором Института общей генетики АН СССР, то можно узнать о Лысенко много любопытного, того, о чем не любят говорить нынешнние антилысенковцы и антисталинисты. Эта книга - о развитии генетики в СССР. Н.П. Дубинин - видный советский генетик, академик, Герой Социалистического Труда, лауреат Ленинской премии, директор Института общей генетики. Являясь научным противником Т.Д. Лысенко, Н.П. Дубинин в то же время был порядочным человеком и в своих воспоминаниях во многом объективно отразил драматический характер противостояния формальных генетиков и мичуринских генетиков.

Академик Дубинин (38) очень много, даже больше, чем сыновья Т.Д. Лысенко, пишет о работах Лысенко по теории стадийного роста растений (концепция яровизации). Он цитирует слова Н.И. Вавилова (1935 г.) о том, что эти исследования Т.Д. Лысенко – “крупнейший результат в области физиологии растений на прошедшее десятилетие” (3. С. 188.)

Вавилов в 1933 году ездил в США на Международный симпозиум по проблемам генетики и селекции в США, где докладывал там о результатах Лысенко, посвященных яровизации, как о выдающемся достижении советской науки (110). Неужели врал? Вообще–то интересный момент: разработал концепцию Лысенко, а в США поехал докладывать Вавилов. Знакомая ситуация, когда руководитель института докладывает за подчиненного его результаты. В том же 1933 году Вавилов представил работу Лысенко на соискание Сталинской премии, как крупнейшее достижение физиологии растений за последнее десятилетие (109).

Жебрак, ссылаясь на утверждения Сакса, писал в своих письмах в ЦК, что яровизация была открыта в Америке в прошлом столетии... Проверка показала полную никчемность этого агроприема для практики. Но где же ссылка на публикации? Более того, тот же Жебрак отмечал в выступлении на сессии ВАСХНИЛ заслуги акад. Лысенко в агрономии и физиологии растений (54. С. 164).

Т. Д. Лысенко открыл способ придавать семенам морозоустойчивость, выдерживая их некоторое время на холоде, а потом перенося в тепло и укрывая одеялом. Молодого «ученого-крестьянина» направили на работу в лабораторию Н. И. Вавилова. Открытие Лысенко было признано Вавиловым. И не важно, что потом оказалось, что яровизация очень дорога, если ее делать как следует, а если не как следует, то все можно и погубить.

Со мной согласен и С. Руссиянов (125): "Работы Лысенко по яровизации являлись фундаментальными теоретическими разработками, подкреплёнными экспериментальными данными. В том числе и предшественников, о чём Лысенко, кстати, упоминает в самом начале своего труда «Теоретические основы яровизации». Сущность работы была в выяснении влияния температурных факторов на онтогенез (индивидуальное развитие) сельскохозяйственных культур и их формообразование с практическим выходом на селекцию новых сортов и повышения урожайности имеющихся, а также агротехнику выращивания перспективных сортов в климатических условиях, для них не благоприятных. Данные работы стали основой для последующей разработки по теории стадийного развития растений. Непосредственно же метод яровизации был разработан как практическое следствие теоретических разработок, и ничего общего с «вымачиванием и охлаждением» не имеет. Так что перед нами классический пример практически значимой теоретической работы, экономическое значение которой в те нелёгкие времена невозможно переоценить".

Следует отметить, что в «Письме трехсот» (это знаменитое письмо академиков, после которого началось развенчание Лысенко) научное значение работ Лысенко по теории стадийного развития не отрицается (109).

Лысенко, по сути дела, разработал теорию температурного мутагенеза. Впервые влияние температуры на развитие растений описал немецкий ученый И. Г. Гаснер в 1918 году. Гаснер заметил, что если проросшие семена озимых подвергать воздействию низких температур, то выращенные из них при весеннем посеве растения выколашиваются и плодоносят. Но это было случайное наблюдение в отрыве от теоретического обоснования. Хотя работы по влиянию температуры на рост, развитие и изменчивость организмов проводились и до него, но теорию разработал именно Лысенко. Лысенко же впервые понял значение данного наблюдения. 15 января 1929 г. Лысенко (совместно с Д. А. Долгушиным) выступил на Всесоюзном съезде по генетике, селекции, семеноводству и племенному животноводству, проходившему в Ленинграде с 10 по 16 января, где предложил способ весеннего посева озимых растений (109).

Работы Лысенко по яровизации являлись фундаментальными теоретическими разработками – самой концепции яровизации, теории стадийного развития растений (научное направление – онтогенетика), подкрепленными экспериментальными данными. В том числе и предшественников, о чем Лысенко, кстати, упоминает в самом начале своего труда. Сущность работы была в выяснении влияния температурных факторов на онтогенез (индивидуальное развитие) сельскохозяйственных культур и их формообразование с практическим выходом на селекцию новых сортов и повышения урожайности имеющихся, а также агротехнику выращивания перспективных сортов в климатических условиях, неблагоприятных для этих сортов. Данные работы стали основой для последующей разработки по теории стадийного развития растений. Непосредственно же метод яровизации был разработан как практическое следствие теоретических разработок, и ничего общего с «вымачиванием и охлаждением» не имеет (109).

Назаренко (109) откопал также информацию том, что именно Н.И. Вавилов говорил в 1935 г. о том, что эти исследования Т.Д. Лысенко по теории стадийного роста растений – "крупнейший результат в области физиологии растений на прошедшее десятилетие". Неужели подлизывался к молодому агроному? И неужели ученые всего мира не заметили компиляции Лысенко?

Да! Акад. П.Н. Константинов, проводивший свои исследования в опытных учреждениях, где отсеивание опытов, дававших отрицательные результаты, не могло иметь места, прибавок от яровизации не получил (73). Но даже в строго формальной западной науке не всегда последователи повторяют результаты первооткрывателя.

После снятия Лысенко в СССР этим направление фактически занимался только академик В.Н. Ремесло. Кстати, и сегодня исследования в области температурного мутагенеза является одной из ведущих тем института. Этим методом создан не один десяток сортов, в том числе знаменитая Мироновская 808. Но почему-то он гораздо менее известен, чем например такая «игрушка» генетиков как, например сома-клональная изменчивость, которая дала гораздо меньше (109).

Итак, Лысенко достоин Нобелевской премии за открытие температурного мутагенеза. Он также сделал выдающееся открытие о роли температуры в стадийности развитии растений.

СОЗДАНИЕ ТЕОРИИ ВЕГЕТАТИВНОЙ ГИБРИДИЗАЦИИ

Одним из выдающихся достижений Лысенко и Мичурина была вегетативная гибридизация, создание единого растения из двух, которая характерна, в основном, для растений… Вегетативные гибриды на уровне знаний 1948 года с точки зрения школы Лысенко подробно описал И.Е.Глущенко. Сам Мичурин открытым текстом называл некоторые (не все) свои гибриды вегетативными гибридами…

Если использовать научный язык, то Мичурин и Лысенко впервые применили на практике направленный мутагенез с помощью введения мРНК растения-хозяина для изменения наследственности в геноме растения привоя, гостя.

Мичурин посвятил свою жизнь селекционной работе, в которой использовал три основных вида воздействия на природу растения: гибридизацию, воспитание развивающегося гибрида в различных условиях и отбор.

Мичурин, конечно, не был первым, кто предложил прививать одно растение другому. Ещё Ч. Дарвин знал о гибридизации. Вот что он писал: "Мы должны будем допустить необыкновенный факт, что два самостоятельных вида могут соединяться клеточной тканью и затем давать растение, которое имеет листья и бесплодные цветы среднего характера между привоем и подвоем и приносить почки, склонные к реверсии; словом, такое растение во всех существенных чертах походит на гибрид, полученный обычным путем, при воспроизведении семенами". Ч. Дарвин является первым учёным, который не только признал реальную возможность гибридизации путем прививки, но и очень высоко оценил известные ему эксперименты, начертав перспективы способа вегетативной гибридизации для познания закономерностей развития живого. В известном труде «Изменение животных и растений в домашнем состоянии» Дарвин отводит целый раздел этой проблеме, назвав его «Гибриды, происходящие вследствие прививки». Здесь собраны многочисленные факты получения таких гибридов, начиная от подробно описанного и разобранного С. Adami и кончая известными Дарвину опытами с S. tuberosum.

Гибридизация, т. е. получение сорта с новыми, улучшенными признаками, чаще всего производилась путем скрещивания местного сорта с южным, обладавшим более высокими вкусовыми качествами. При этом наблюдалось отрицательное явление—доминирование у гибрида признаков местного сорта. Причина этого заключалась в исторической приспособленности местного сорта к определенным условиям существования.

Мичурин вел речь о соматических гибридах, и неспроста. Действительно, появляются новые общие свойства, но со временем один из "сожителей" начинает подчинять себе другого: того, что генетически моложе, взят в более молодой стадии, попал в нетипичные условия или подвергся стрессу. Соматические вегетативные гибриды можно получать на стадии семян, прививая части семядолей совершенно разных семян. При этом иногда вырастают удивительные химеры (101, 102, 104, 274).

В конце концов, Мичурин большей частью стал использовать именно метод вегетативной гибридизации. В последующей своей работе по гибридизации Мичурин широко применял разработанный им метод ментора. Для воспитания в гибридном сеянце желательных качеств сеянец прививается к растению, обладающему этими качествами. Дальнейшее развитие гибрида идет под влиянием веществ, вырабатываемых растением-воспитателем (ментором); у гибрида усиливаются искомые качества. В данном случае в процессе развития гибридов происходит изменение свойств доминантности.

Метод ментора удобен тем, что его действие можно регулировать следующими приемами: 1) соотношением возраста ментора и гибрида; 2) продолжительностью действия ментора; 3) количественным соотношением листвы ментора и гибрида. Например, интенсивность действия ментора будет тем выше, чем старше его возраст, крона богаче листвой и чем длительнее он действует.

Ментором может быть как подвой, так и привой. Таким способом Мичурин вывел два сорта—Кандиль-китайку и Бельфлёр-китайку.
Кандиль-китайка — результат скрещивания Китайки с крымским сортом Кандиль-синап. Поначалу гибрид стал уклоняться в сторону южного родителя, что могло развить в нем недостаточную холодостойкость. Чтобы развить и закрепить признак морозоустойчивости, Мичурин привил гибрид в крону матери Китайки, обладавшей этими качествами. Питание в основном ее веществами воспитало в гибриде нужное качество.

Выведение второго сорта Бельфлёр-китайки было сопряжено с некоторым уклонением гибрида в сторону морозоустойчивой и раннеспелой Китайки. Плоды гибрида не могли выдерживать долгого хранения. Чтобы воспитать в гибриде свойство "лежкости", Мичурин привил в крону гибридного сеянца Бельфлёр-китайки несколько черенков позднеспелых сортов. Результат оказался хорошим — плоды Бельфлёр-китайки приобрели желаемые качества — позднеспелость и лежкость. Тем самым Мичурин открыл, что наследственная информация из привоя может оказывать влияние на подвой.

Результат гибридизации растений в существенной степени зависит от возраста растения - донора привоя. Ветвь, даже молодая, происходящая от старого дерева, остается стабильной и приносит плоды с признаками растения-донора, в то время как ветвь от молодого дерева приобретает признаки подвоя и приносит плоды с измененными признаками (267, 274).

Методы, использованные Мичуриным, отличаются особым новаторством. Например, метод предварительного вегетативного сближения означал, что однолетний черенок гибридного сеянца рябины (привой) прививается в крону растения другого вида или рода, например к груше (подвой). После 5—6-летнего питания за счет веществ, вырабатываемых подвоем, происходит некоторое изменение, сближение физиологических и биохимических свойств привоя. Во время цветения рябины ее цветки опыляют пыльцой подвоя. При этом осуществляется скрещивание.

Метод посредника применялся Мичуриным при осуществлении гибридизации культурного персика с диким монгольским миндалем бобовником (в целях продвижения персика на север). Поскольку прямое скрещивание указанных форм не удавалось, Мичурин скрестил бобовник с полукультурным персиком Давида. Их гибрид скрещивался с культурным персиком, за что и был назван посредником.

Не менее интересным оказался другой метод гибридизации, предложенный Мичуриным, так называемая отдаленная (внеродственная) гибридизация. Она стала важным компонентом так называемой мичуринской генетики. Специальными методами Мичурин сумел преодолеть "иммунологические" (отторгающие не своё) барьеры отдаленной гибридизации.

Гибридизация дает очень интересные результаты. В Болгарии прививают смородину на вишню. А Мичурин прививал грушу на лимон. Фактически, применяя специальные способы, можно, видимо, приживить и апельсин на березу (274).

А вот ещё одно изобретение (скорее даже открытие) Мичурина. А китайцы еще в древности заметили: если ветку положить строго горизонтально, из нее вверх лезет несколько побегов. Если такая ветка прикопана, под каждым побегом образуются корни, и можно получить несколько растений. Мичурин, уже в десять лет играючи прививавший что угодно, научился это использовать. Земли в его питомниках всегда был дефицит и он придумал способ воздушных отводков. Если ветку нельзя спустить к земле, то почему бы землю не поднять к ветке? Иван Владимирович использовал прибор из резиновой и стеклянной трубки. Оказалось, что начала корнеобразования на любом уровне ствола - достаточно воды. Если на каком-то уровне ствола постоянно и сильно увлажнять кору, то в этом месте начинается рост корешков.

Далее. Мичурин использовал свойство передачи генетической информации от РНК на ДНК для направленного изменения генотипа растений. Как это делают селекционеры домашних животных. Это делается через соматические клетки. Но в растениях нет долгоподдерживающихся специализированных половых клеток. Из одной клетки растения можно вырастить целый организм. По–сути, используя вегетативную гибридизацию, Мичурин научился воздействовать внешней средой (растением хозяином) на генетическую программу привоя. Гибридизация привоев оказалась простым, но мощным методом создания новых сортов. Она позволяет объяснить тайну выведения плодовых деревьев (263).

ОТКРЫТИЕ ПЕРЕНОСА ГЕНОВ ПРИ ВЕГЕТАТИВНОЙ ГИБРИДИЗАЦИИ

Но наиболее интересно открытие Лысенко и Алексеевой переноса генетической информации при вегетативной гибридизации, что недавно переоткрыли немецкие ученые. В 1933 г. М. В. Алексеева вместе с Лысенко открыла перенос наследственной информации от подвоя в привитый черенок через плазмодесмы. Открытие переноса генетической информации с помощью информационной РНК через трубочки–плазмодесмы, связывающие клетки растений в единый синцитий стало вторым важнейшим открытием Лысенко вместе с М.В. Алексеевой (2).

Как я писал выше, в 1933 г. М. В. Алексеева привила на пасленовые (табак, дурман) черенки помидора (тело помидора). Было обнаружено, что листья томата, привитого на табак, содержат никотин, а в плодах томата, привитого на дурман (датура страмониум) появился атропин. Наиболее существенным доказательством открытия было изменение формы плода от прививки на дикорастущей солянум дулькамара. Следовательно, в привитое растение (привой) переносится наследственная информация. Причем данная информация потом обнаруживается в семенах привоя. Следовательно, процесс идет дальше и информация из информационной РНК, прибывшей из подвоя по единой клеточной сети, переносится в ДНК привоя. Подержал тогда Алексееву никто иной как Лысенко, в то время как ряд научных кругов в СССР попытался «зарубить» это открытие. Опыты Алексеевой базировались на находках самого Лысенко. Его статья с открытием гибридизации помидоров была опубликована в 1923 году (267).

Акад. Презент косвенно подтверждает открытия, которые сделала Алексеева. Он говорил на сессии ВАСХНИЛ: ”Говорят, нет вегетативных гибридов. А известен ли вам, академик Жуковский, такой случай, который был в Тимирязевской академии. Некоторые сотрудники этой Академии, вопреки насаждаемому в этой Академии духу неприязни к мичуринскому учению и методам (кстати укажу, академик Немчинов, что мичуринцы все же у вас в Академии есть, и могу вас утешить, что их скоро будет еще больше) (смех), некоторые мичуринцы в Тимирязевской академии провели вегетативную гибридизацию и высеяли семенное потомство гибридов. Так как это были вегетативные гибриды помидоров на дурмане, та и была вывешена предостерегающая надпись: "Осторожно, плодов не рвать, опасно". И все-таки, не по неверию, понятно, в вегетативные гибриды, а просто по незнанию, проходящие срывали эти плоды и попадали потом в больницу.

Если и этих фактов мало, то могу напомнить, что на экспериментальной базе Академии Горки Ленинские, незадолго перед войной были привиты помидоры на паслен. Не только в самих гибридных плодах, но и в семенном потомстве от этой прививки получился довольно приятный острый привкус плодов. Семенного потомства этих вегетативных гибридов было получено так много, что “ пришлось их плоды сдать в местный кооператив для реализации. Люди из соседних сел, которым, видно, понравился этот особый вкус гибридных плодов, приходили в кооператив и запросто спрашивали: "Отпустите килограмм вегетативных гибридов". Это все были простые люди, ценящие плоды по вкусу, а не по названию. Академик же Жуковский и здесь наверняка вышел бы из положения и, покупая помидоры вегетативных гибридов, говорил бы: "Отпустите мне килограмм мутаций" (конец цитаты).

Осенью 1939 года при журнале "Под знаменем марксизма" была организованна дискуссия "Спорные вопросы генетики и селекции", на которую были приглашены заведующие кафедрами генетики и ведущие сотрудники институтов генетики страны. Здесь демонстрировались эти растения, однако статья в международном реферируемом журнале так и не появилась. Прошу отметить такой момент – у наших «научных светил» прямо перед глазами доказательство важнейшего научного открытия, а они без зазрения совести их игнорируют и старательно изолируют мировое сообщество от этого открытия.

В результате мировая научная общественность не получила информации об открытии советского ученого и оно оказалось переоткрытым полвека спустя, естественно уже на другом научном уровне знаний. А «поблагодарить» за это следует наших «светил».
Недавно эксперименты с привоями показали, что эндогенная (от хозяина) информационная РНК (переносчик информации от ДНК к месту синтеза белка) входит и передвигается по клеточным системам перемещения растворов в привоях. Было открыто также, что информационная РНК (переносчик информации от ДНК к месту синтеза белка) может передвигаться по клеточным системам между клетками хозяина, за счет которого эта наследственная информация может потом включаться в ДНК привоя - с помощью особых ретровирусов и белковых частиц - ретротранспосом - оказываясь интегрированной в геном привоя (258, 265).

Напомню, что, например, академик Жуковский, соратник Н.И. Вавилова, мало того, что закрыл эти работы тогда, в 30-х, но и категорически отказывался признать их результаты много позже - на памятной сессии ВАСХНИЛ в 1948 г. Он потребовал на сессии предъявить ему 'в натуре' невозможное - с точки зрения теории Моргана - мутирующее воздействие подвоя на клетки привоя, и взял свои слова обратно, когда ему показали результаты экспериментов (110).

Знаете ли вы, что в советские годы в СССР выдавались свидетельства на научные открытия? Я попытаюсь вывести формулу научного открытия, сделанного Лысенко и Мичуриным. Открытие закона передачи наследственных признаков в растительных клетках от подвоя к привою путем переноса информационной РНК через трубочки–плазмодесмы и обратной транскрипции с информационной мРНК на ДНК.

Открытие Лысенко и Алексеевой было подтверждено в СССР. Опыты А. А. Авакяна и М. Г. Ястреба в 1941 г. с помидорами доказывают возможность передачи наследственных признаков путем прививки. В этих опытах черенок белого томата «Альбино» был привит на красноплодный дикий мексиканский сорт. Таким образом, черенок питался соком красно-плодного томата и вместо белого у него образовался красный плод. Высеяв полученные семена, А. А. Авакян получил несколько десятков растений в большинстве с красными плодами и частично с белыми. Семена этих плодов снова высевали и получали из одного красного плода первого семенного потомства растения с плодами малиново-красной окраски, чисто ярко-красные и белые, как «Альбино» (16).

Недавно был найден механизм реализации данного феномена. Жаль, что советские формальные генетики так и не смогли понять, что открытие Лысенко и М. В. Алексеевой вполне тянуло на "Нобель". Да! Работа по выведения сорта помидоров, способных синтезировать атропин, вполне заслуживала Нобелевской премии. Но не все результаты тогда оформляли по–научному. Ведь общество было другое, да и на Нобелевские премии и их лауреатов смотрели косо, как на прислужников буржуев.

Итак, Лысенко достоин Нобелевской премии за открытие химического мутагенеза путем транспорта мРНК через плазмодесмы растений.

Последователи Мичурина и Лысенко показали, что молодая ветвь, привитая на старое дерево другого сорта или даже вида, приобретает некоторые черты подвоя и что некоторые из таких приобретенных признаков могут быть переданы половым путем в следующее поколение. Например, ветвь разновидности томата с желтыми плодами, привитая на разновидность томата с красными плодами, даст некоторое количество плодов с красноватым оттенком, и несколько растений, выращенных из семян этих красноватых плодов дадут желтые, красноватые и иногда красные плоды (268. С. 279–280, 405).

В дальнейшем западные ученые получили Нобелевскую премию за открытие внеядерного переноса нуклеиновых кислот, а также за открытие обратного переноса генетической информации, которое, по сути, совершили Лысенко и Алексеева более полувека назад. Имя Лысенко оказалось не только забытым, как и имя Алексеевой, но и оплеванным отечественной наукой.

Аналогичные опыты были повторены с теми же результатами в шестидесятых и семидесятых японскими авторами (234-236). Красный цвет плодов томата в экспериментах мичуринцев и японских авторов был передан следующему поколению через семена. Пигментные посредники или синтезирующие пигмент ферменты или регуляторы экспрессии генов смешаны благодаря мобильности молекул в пределах всего растения (193).

Итак, задолго до западных ученых Мичурин, Лысенко и его последователи сумели предвосхитить механизм обмена наследственной информацией, происходящий во время гибридизации, то есть когда клетки двух растений сливаются в общий синцитий и образуют одно растение, по которому могут двигаться ассимиляты.

Одним из выдающихся достижений Лысенко и Мичурина была вегетативная гибридизация, которая характерна, в основном, для растений… Вегетативные гибриды на уровне знаний 1948 года с точки зрения школы Лысенко подробно описал И.Е.Глущенко. Сам Мичурин открытым текстом называл некоторые (не все) свои гибриды вегетативными гибридами…

Какие ещё открытия, сделанные Лысенко и его последователями заслуживают Нобелевских премий? Думаю, что открытие Самохваловой приспособительного наследования у тлей, как и открытие Моргана хромосом, заслуживало Нобелевской премии. Если учесть взрывной характер публикаций по теме внегенетического наследования, то пионерская работа Самохваловой вполне тянет на будущую Нобелевскую премию, как и работы Ванюшина (331). Кроме того, Лысенко по праву принадлежат Нобелевские премии и за химический и температурный (яровизация под воздействием низких температур) мутагенезы.