>>Чтобы показать, что Сванидзевские любимцы, коими Вы восхищаетесь, ничего существенного в науку не внесли. Я пытался найти следы Вавилова в области иммунитета растений, где он будто бы что–то открыл, нет его следов там.
>Ну так и показывали бы, а то только мамой клянетесь и заклинаете.>
Обзор по иммунтету растений в копилке. Читайте, Степанов опять Вам поможет.
>А так, с учетом того, что Вы уже неоднократно демонстрировали, что Ваша цель не разобраться, а напустить "правильного" идеологического тумана, веры Вам нет.>
Я Вас и не собирался уверить. Это я для зрителей. У Вас гораздо больше веры Сванидзе. Кстати, дайте ссылочку, а то обвинения голословные и похожи на брехню.
>>Если кратко, то они нашли, что антибиотикорезистенность передается от подвоя в генотип привоя. Именно это перед войной и доказал вместе с Алексеевой Лысенко, но на помидорах.
>Вы очень не точны, >
Так читайте внимательнее, я сказал же кратко.
>во-первых, антибиотикорезистентность передается в обе стороны, т.е. и от привоя к подвою, во-вторых, как я и говорил, генетический обмен обнаружен только в зоне непосредственного контакта тканей привоя и подвоя (т.е. сам привой генетически не меняется) и затрагивает только пластидную, но не ядерную ДНК.>
Имеется немало рябот, где перенос мРНК и до ДНК по плазмодесмам доказан. Вот обзор.
> Разумеется, если непосредственно из места контакта вырастить побег, добиться чтобы он заплодоносил, то тогда действительно можно получить вегетативно-гибридные семена.>
Разумеется. Наконец, начали что–то понимать.
> Лысенко же, на помидорах показывал нечто совсем иное, что многократно пытались повторить, но не получалось, видимо либо у кого-то кривые руки были, ну или кто-то слегка шельмовал, очевидно выдавая химеризацию за вегетативную гибридизацию.>
И где ссылки на то, что эти эксперименты повторяли? Или опять как с этим Ваксбергом–Виклером придумали?
>>>>Слямзили весь эксперимент Лысенко и Алексевой. И перенос информации с РНК на ДНК давно доказан. Так что везде воровство.
>>>Пока мне это все напоминает пассаж о дядьке в Киеве. Кто слямзил? Чего именно слямзил? Куда толкнул краденное? То ли слямзили у Лысенко, то ли это Лысенко слямзил эксперимент у Винклера?>
>>
>>И кто такой Винклер? Про Лысенко слыхал, про Алексееву слыхал, Вавилова слыхал, а про Виклера не слыхал.
>Ну надо же, а так пальцы гнули на счет своего профессионализма.>
А где я утверждал, что я профессионал генетик. Я профессионал клеточный биолог. И даже в клеточной биологии я не все имена знаю. Все имена я знаю только в области клеточного транспрта. Судя же по ответу, Вы вообще ничего о Виклере не знаете. Сбрехали, как обычно?
>> Я же имел в виду, что авторы из Саиенс доказали то, что давно доказл Лысенко и без всяких ссылок на него.
>А что доказал и что вообще мог доказать Лысенко? Что подвой изменяет наследственность привоя? Так этого ни тогда, ни сейчас еще никто не наблюдал.>
Читайте Лью. Может поймете, вдвоем. Вам–то самому не дано.
>Странно, а вот упомянутые Вами и Сайенс германские биологи в своих опытах по поводу вегетативной гибридизации, якобы вставили в ядерный геном фрагмент ДНК, содержащий два гена: ген устойчивости к антибиотику канамицину и ген желтого флуоресцирующего белка.>
Нет, не странно. Если любой из этих белков посадить в микроспоридию, то она их не процессирует. Эти гены реализуются с учатием такого количества других генов, что говорить о связках ген–признак не приходится.
> Более того, они якобы использовали полученные признаки как маркеры генетического переноса в своих опытах. Что же, раз прямой связи между этими генами и признаками быть не может (как мамой клянется один профессионал), значит и опыт был некорректный и никакого, даже ограниченного, подтверждения теория "вегетативной гибридизации" Лысенко не получила.>
А Вы посадите ген антибиотикорезистентности в бактерии. Согласно формальным генетикам, должен появиться признак. Или ген дефектного инсулина. Будет ли диабет у бактерий?
И наконец, для самобразования вас обоих.
ГЛАВА 4. ЧТО ТАКОЕ ГЕН?
«Ген – ругательное слово из трех букв, которого даже на заборах не пишут» (народная мудрость)
В данной главе я попробую установить, а что же такое ген, как менялось это понятие по мере развития формальной генетики и молекулярной биологии и есть ли в организме те самые гены–шарики, о которых говорили Морган и формальные генетики.
4.1. ЕСТЬ ЛИ ОСОБОЕ НАСЛЕДСТВЕННОЕ ВЕЩЕСТВО?
Формальные генетики утверждали, что существует ли некое, отдельное от тела организма 'наследственное вещество', посредством которого и только посредством которого передаются наследственные признаки. В то время формальные генетики связывали наследственность только с ядром и хромосомами и поэтому не могли признать результаты вегетативной гибридизации (см. раздел 9.1), полученные Мичуриным.
Формальные генетики считали, что ядру принадлежит монополия в передаче признаков по наследству, что гены сосредоточены ТОЛЬКО в хромосомах, а потому передавать наследственные признаки при гибридизации можно, ЛИШЬ передавая хромосомы. Лысенко это отрицал, полагая, что роль цитоплазмы также существенна и наследственность может передаваться через ассимиляты. Лысенко и мичуринцы, исходя из своей концепции наследственности, утверждали (и показывали это экспериментально), что передавать и создавать наследственные признаки можно и без передачи хромосом.
Лысенко же был против следующего: "Исходным принципом менделизма–морганизма является то, что живое тело состоит из двух качественно различных тел – обычного, всем известного тела (сомы) и необычного, никому не известного – наследственного вещества. Обычное тело (сома) подвержено изменениям соответственно условиям внешней седы (то есть, генетики в те годы не знали природу наследственного вещества, ДНК доказано только для бактерий, гены не идентифицированы. У бактерий нет хромосом – С.М.). Наследственное же вещество не подвержено такого рода изменениям. Поэтому, согласно этому учению, условиями жизни нельзя изменять природу организмов" (И что здесь не верного? Так и я против таких взглядов – С.М.).
Имея те же средства и приборы для научных исследований, Лысенко пришел к выводу, что за наследственность организма несут ответственность не эти пресловутые шарики, а любая частица организма, и изменяется организм под воздействием окружающей среды. В отличие от морганистов, Лысенко считал, что наследование есть свойство целого организма, а не только генов. Следуя определению Лысенко, наследственность есть способность живого тела требовать для своего развития определенных условий и реагировать на эти или отличающиеся условия определенным образом. Да! Имея те же средства и приборы для научных исследований, Лысенко пришел к выводу, что за наследственность организма несут ответственность не эти пресловутые шарики, а любая частица организма, и изменяется организм под воздействием окружающей среды (82).
"Современная" молекулярная биология признала, что в этом вопросе "классическая" генетика не права: молекулярная генетика признала, что цитоплазма также является носителем генетических свойств клетки. Более того, установлено, что никакого отдельного и неизменяемого вещества нет. ДНК содержит только 5% участков, где зашифрованы белки. Остальное – шум. ДНК постоянно метаболизируется и изменяется. Наследственные свойства могут передаваться и посредством РНК. Гены постоянно изменяются, признаки же практически не изменяются из–за "буферности" целостного набора генов. Идея же мобильных наследственных элементов дискредитируют идею о том, что гены тождественны хромосомам (193). Однако и сейчас дискретные наследственные факторы – суть генетики. О том, что на Западе была (да и есть) жесткая догма в отношении формальной генетики, предписывающей, что нет изменений, кроме мутаций в веществе наследственности, свидетельствует Мак–Клинток в воспоминаниях о том, как коллеги встретили ее сообщение гробовым молчанием.
С.С. Перов, один из выступавших на августовской сессии ВАСХНИЛ заявил следующее: "Додуматься до представлений о гене как органе, железе с развитой морфологической и очень специфической структурой может только ученый, решивший покончить с собой научным самоубийством. Представлять, что ген, являясь частью хромосомы, обладает способностью испускать неизвестные и ненайденные вещества - ...значит заниматься метафизической внеопытной спекуляцией, что является смертью для экспериментальной науки".
"Современная" молекулярная генетика признала, что и в этом вопросе "классическая" генетика не права: молекулярная генетика признала, что цитоплазма также является носителем генетических свойств клетки.
Тот факт, что не только хромосомы являются тем носителем "наследственного вещества", в котором и "только" (это важнейший пункт разногласий мичуринцев и вейсманистов) в котором сосредоточена информация о том, какие наследственные признаки будут у потомства - доказано опытами Б.Мак–Клинток, которая в "...самом начале 50-х годов Б.Мак–Клинток открыла мобильные элементы, способные причудливо перемещаться по хромосомам и вне их" (26).
Молекулярная биология доказала, что исключительность наследственного вещества и его отделенность от тела организма – мифы. Идея мобильных наследственных элементов дискредитируют т идею о том, что гены тождественны хромосомам. Горизонтальный перенос и эпигеномная наследственность говорят о том, что наследственная информация не связана исключительно с каким–либо одним веществом. В то время морганисты связывали наследственность только с ядром и хромосомами и поэтому не могли признать результаты гибридизации, полученные Мичуриным (193). Сейчас же доказано, что гены могут двигаться между хромосомами и между видами. Сама цитоплазма ооцита оказывает влияние на степень проявления признака у потомка. Тем самым опровергнута и догма классической генетики о "принципиальной" случайности мутаций.
Самое интересное, что до 1948 года мифическое наследственное вещество так и не было идентифицировано. По крайней мере, согласия (консенсуса) среди ученых в этом вопросе не было. До 1944 года именно белки считались субстратом наследственности (131, 160). Даже открытие ДНК не изменило ситуации, так как ДНК не вовлечена в синтез белка. Американские генетики в течение 8 лет не проявляли интереса к сделанному в 1944 году открытию роли ДНК в передаче генетической информации. Лишь к 1953 году, после создания теории, ставшей стержнем молекулярной биологии, выявилось значение этого открытия. Однако даже в 1960 году в Оксфорде вышла монография, в которой утверждалось, что ген имеет белковую природу (239).
Вот как понимали мичуринцы наследственность. "Под наследственностью растений и животных мы понимаем не особое вещество, а свойство живого тела – жить, расти, развиваться. Всё это идет через обмен веществ живого тела с внешней средой. Построение тела в процессе его роста и развития идет через ассимиляцию, иными словами, тело организма со всеми его свойствами и качествами получается из ассимилированной пищи (в том числе и ДНК – С.М.). Организм, согласно своей природе, согласно своей наследственности избирает из окружающей среды нужные ему условия. В какой степени тело организма в каждом новом поколении строится сызнова, в такой же степени сызнова в каждом новом поколении получаются и все свойства этого тела, в том числе и его наследственность. Поэтому изменяя условия жизни, условия обмена веществ, можно изменять построение тела организмов и этим самым, соответственно воздействию условий внешней среды направленно изменять наследственность, то есть природу организмов. Большой экспериментальный материал, подтверждающий правоту мичуринского направления в науке и практическую ценность, охаивается, отбрасывается или замалчивается, как будто бы несуществующий".
И что здесь неправильного? Я подпишусь под каждым словам данной цитаты из письма работников министерства сельского хозяйства, взятых, видимо, у Лысенко. В наследственности записаны только самые общие принципы и если организм не находит условий, при которых эти принципы могут реализоваться то он погибает. Основная масса фенотипических признаков не записана, а формируется через взаимодействие с окружающей средой и через взаимодействие белков, активированных в условиях данной среды. Например, если от ребенка с группой крови АВ в определенный момент развития убрать галактозу, и одновременно давать внутрь ингибиторы ферментов синтезирующих и транспортирующих галактозу внутрь просвета пластинчатого комплекса Гольджи, то он будет иметь другую группу крови... Мичуринские генетики никак не полагают, что можно резко изменить организм. Это можно сделать постепенно. Да, они, как обычно, преувеличивали свои выводы и говорили о том, что вид может получаться даже на полях или в лесах... Но это обычный подход в науке -– преувеличивать значение собственной гипотезы.
"Каждая капля протоплазмы обладает наследственностью" – говорил Лысенко и был прав, так как белки взаимодействуют между собой и только через такое взаимодействие может быть реализована наследственная информация.
Как пишет Мухин, «…принадлежащее Т.Д.Лысенко утверждение, что «наследственностью обладают не только хромосомы, но живое тело вообще, любая его частичка», то есть наследственностью обладает и цитоплазма, высмеивалось… всеми генетиками. Но открытие эпигенетического наследования убедительно подтвердило правоту Лысенко. Стабильность признаков обеспечивается буферной емкостью всего генома, а не каким–то неведомым наследственным веществом.
4.2. ЭПИГЕНЕТИЧЕСКАЯ ПЕРЕДАЧА НАСЛЕДСТВЕННОСТИ
Идея эпигенетической наследственности имеет долгую историю. Ещё в 1934 г. Морган предположил наличие эпигенетических факторов. Но эта его идея отвергалась до середины 50–х годов. Для читателей, которые этим специально не занимаются, я кратко расскажу об эпигенетике. Вначале отмечу, что хотя эпигенетическая изменчивость уже давно и интенсивно исследуется, но тот факт, что она опровергает формальную генетику почему–то замалчивается.
Что такое генетика, молекулярная биология, биохимия и эпигенетика в шутливой форме лучше всего определил Т. Бестор. Если есть известный ген и известный продукт, полученный на основе информации, записанной в гене, то это молекулярная биология. Если есть известный ген и неизвестный его продукт, то это генетика. Если ген неизвестен, а продукт известен, то это биохимия. Если же неизвестны и ген, и его продукт, то это эпигенетика (245). Отмечу, что вне–генетическое наследование может продолжаться тысячи лет и участвовать в эволюции. А раз так, то возникает вопрос, а как же тогда догма формальных генетиков о наличии некоего изолированного от тела и неизменяемого наследственного вещества?
Перевод наследственной информации, с гена на белок и затем на признак существенно определяется структурой хроматина, с которым взаимодействует. Последняя может быть направленно изменена внешними воздействиями и в ряде случаев обладает способностью наследоваться - как митотически, так и в процессе мейоза. Кроме этого существуют механизмы, передающиеся без участия нуклеотидной цепи ДНК, кодирующей тот или иной ген (21, 25).
В последние годы ученые открыли несколько способов передачи по наследству приобретенных признаков, способов, которые не связаны напрямую с изменениями ДНК, т. е. с мутациями в современном понимании этого слова. Поэтому такую наследственность называют эпигенетической, или надгенетической. Более того, в настоящее время для объяснения указанных экспериментов по передаче приобретенных свойств по наследству, без использования генетического материала выделилась целая наука эпигенетика. Познание разнообразных механизмов эпигеномного наследования представляется сейчас одной из самых актуальных проблем молекулярной генетики эукариот (21). Достаточно подробно разбирает научные результаты, касающиеся эпигенетической или неканонической наследственности, в своих интересных работах Голубовский (25, 26). Более подробное изложение эпигенетической наследственности можно найти в Приложение III.
Какие же механизмы в настоящее время включает надгенетическое наследование? Прежде всего, это генетический аппарат митохондрий и пластид. Поскольку митохондрии и пластиды произошли из прокариотов, то есть предшественников современных бактерий, они сохранили основные компоненты системы передачи наследственной информации, которая в них функционирует автономно от ядра. Там есть кольцевая молекула ДНК, есть аналоги мРНК, рРНК, тРНК...
Кроме независимых митохондриальных и пластидных систем передачи наследственной информации существует горизонтальный перенос наследственной информации, который тоже не зависит от ядерного и включает следующие механизмы:
I. Целенаправленная передача ДНК другому организму
II. Захват клеткой ДНК из внешней среды
III. Перенос в составе вирусов, плазмид мобильных элементов
IV. Перенос мРНК по межклеточным каналам в симбиотических системах типа растений.
V. Случайное включение чужих генов в ходе починки ДНК или случайного захвата из внешней среды.
VI. Половой процесс, кроссинговер.
Кроме того надгенетические механизмы включают:
1. Метилирование ДНК, что нарушает упаковку и считывание
2. Метилирование гистонов, что нарушает "расплетание-сплетание" хромосомы
3. Мобильные генетические элементы в хромосоме. Как они функционируют, никто не знает.
4. Цитоплазматическая наследственность (митохондрии, пластиды)
5. Мембранное контактное наследование через ассоциированные с мембраной белки по прионовому типу у животных.
6. Цитоплазматическое контактное наследование через белки по прионовому типу у дрожжей
7. Асимметрия зиготы и организма наследуется не через гены, а через цитоплазму.
8. Наследование через взаимную активацию и блокирование генов.
9. Малые молекулы РНК (более подробно см. Приложение III).
Поэтому вывод из нашего анализа быть может только один – утверждение Лысенко о том, что никакого отдельного наследственного вещества нет, оказалось правильным. То есть и в вопросе Лысенко был прав. По крайней мере, он ошибался меньше, чем тогдашние формальные генетики.
4.3. ЧТО ТАКОЕ ГЕН?
Для морганистов ген стал своеобразным фетишем. До открытия молекулы ДНК формальные генетики-вейсманисты (или в советской терминологии – вавиловцы) утверждали, что гены – это шарики диаметром 0,02-0,06 микрометра (миллионная доля метра), которые никак не зависят ни от самого организма, ни от окружающей среды. Лысенко же был против такого механистического взгляда на ген.
Теперь самое время задаться вопросом: что же такое ген? Есть ли вообще те неделимые кирпичики, кодирующие белки, кирпичики, которые Морган предлагал считать генами? Вот, например, в издании для детей "Детская энциклопедия"(раздел Биология, издательство Аванта) есть описание гена I и гена Е у кур. Будто бы ген I отвечает за их сплошной белый окрас, а ген Е за сплошную черную окраску перьев. Вопрос на засыпку генетикам, а как называется ген I и ген Е и что они делают в клетке?
Как пишут в наиболее широко распространенном на Западе учебнике "Молекулярная биология клетки" (127), обнаружение, что эукариотические (а проще небактериальные или клетки с обособленным ядром) клетки содержат интроны и что их кодирующая последовательность нуклеотидов может считываться более чем одним способом, подняло вопрос о том, что такое ген. Ведь вроде бы подразумевалось, что один ген это одна полипептидная цепь. Сейчас считается, что это отрезок ДНК, который кодирует одну молекулу РНК, которая в свою очередь кодирует одну полипептидную (или белковую) цепь или сама по себе имеет особую клеточную функцию. Явление альтернативного сплайсинга (или вырезания ненужных цепей нуклеотидов по–разному) подрывает и это определение. Самое интересное, что удаление интронов из генной последовательности нуклеотидов приводит к тому, что полученная информационная РНК не может покинуть пределы ядра.
Современный ген - участок ДНК, кодирующий отдельный белок, уже не имеет ничего общего с геном в менделистском понимании. И в том, что наследственное вещество состоит из таких генов, не содержится ничего принципиально отличного от утверждения, что всякое вещество состоит из элементов. Идея о дискретности наследственного вещества опустилась от принципиального - “каждому признаку - свой ген” до тривиального - вещество наследственности состоит из элементов - отдельных отрезков ДНК (15).
В литературе было предложено несколько определений гена (совсем устаревшие я опускаю). Ген - это участок или несколько участков ДНК, в котором последовательность нуклеотидов определяет последовательность аминокислот в полипептидной цепи. Но есть гены, которые кодируют не информационные РНК, а рибосомальные РНК и транспортные РНК. Ген есть инструкция, записанная в нуклеиновых кислотах, она очень сыра и часто плохо понимаема, она адаптируется, в зависимости от обстоятельств, как и говорила сторонница Лысенко Самохвалова (100). Геном называется участок ДНК, кодирующий один белок. Он начинается с так называемого старт кодона, которые указывает молекуле белка, ответственной за образование молекулы информационной РНК в ядре, что именно здесь начинается информация, кодирующая данный белок. Похожий сигнал есть и в конце гена. Другими словами, промотор сигнал (или инициирующий сигнал) и стоп сигнал определяют, когда надо начинать транскрипцию и когда закончить. Ген (эукариотный) – это длинная и преимущественно случайная, не кодирующая последовательность нуклеотидов, в которой расположены участки (экзоны), способные после вырезания из транскрипта этого гена и их объединения в строго определенной очередности, кодировать определенную функцию.
Вместо термина ген нередко используется термин кодирующая последовательность ДНК – это отрезок двойной нити ДНК, с которого копируется РНК. Иногда генами считают отрезки ДНК, начиняемые особыми последовательностями нуклеотидов, так называемыми «старт-кодонами».
Гены из одной и той же пары аллельных генов не могут быть в двух хромосомах. Такие гены всегда в пределах одной хромосомы. Гены, которые имеются у разных видов, но которые похожи друг на друга из–за того, что они произошли от общего предка, называют ортологичными генами. Ортологичные гены часто, но не всегда, имеют ту же самую функцию. Ортологичные гены, наследованные от общих предков, отвечают за наследование того же самого признака, так пишут в англоязычной Википедии. Опыт построения хромосомных карт, казалось бы, твердо указывал, что положение генов на хромосомной карте устойчиво наследуется. После открытия мобильных элементов генетический материал генома условно разделили на устойчивый и на подвижный (92).
Наиболее распространенные типы регуляторных генов - это промоторы (к ним присоединяется РНК полимераза, чтобы начать транскрипцию), терминаторы (на таких участках РНК полимераза кончает транскрипцию), операторы (к ним присоединяются белки – репрессоры, выключающие работу РНК полимеразы), энхансеры (усилители) и сайленсеры (заставляющие молчать) - участки ДНК, к которым присоединяются особые белки, уменьшающие скорость транскрипции. Существуют "узнающие особые последовательности" нуклеотидов.
Если продолжить здесь наши "макаронные" аналогии, то подобная ситуация очень похожа на запись на твердом диске компьютера. Там компьютер записывает информацию на имеющемся свободном пространстве, а, если по ходу данной дорожки уже имеется запись, то компьютер просто перескакивает на следующее свободное пространство, делая об этом запись. Если же сбивается управляющая дорожка, то информация на диске становится шумом.
4.4. РАЗВИТИЕ ПРЕДСТАВЛЕНИЙ О ГЕНЕ
История развития понятия ген хорошо описана в книге Келлер (182) и я не буду углубляться в детали. Моя задача – сообщить читателям, которые не являются специалистами в генетике, но мне верят, что уже с 1965 г. идеи Лысенко активно обсуждались в генетической литературе Запада. Сейчас же большинство молекулярных биологов отказывается от понятия ген и основных постулатов формальной генетики. Но давайте по порядку.
Первым вопросом, который задали себе генетики, был вопрос, а почему фенотип подавляющего большинства организмов чрезвычайно стабилен, почему фенотип одного и того же вида живых существ имеет такую замечательную воспроизводимость? Для объяснения этого феномена Вайсман предположил существование особых самовоспроизводящихся элементов, которые детерминируют (определяют) свойства организма. Он назвал эти элементы детерминантами. Дарвин тоже говорил о похожих элементах, геммулах или геммулесах. Де Фриз писал, что как физика и химия основана на молекулах и атомах, так и биологические науки должны проникать до самых этих элементарных единиц для того, чтобы объяснить ими комбинации феноменов живого мира.
Ещё Дарвин называл некие гипотетические элементы, передающие наследственные свойства, геммулами (единицами пангенеза по его теории пангенеза). Мендель назвал эти единицы элементами. Вейсман называл их детерминантами. В 1889 г. ещё до своего переоткрытия "законов Менделя" Де Фриз назвал эти элементы пангенами. В 1889 г ДеФриз опубликовал книгу "Внутриклеточный пангенез", в которой он постулировал, что каждый признак имеет свой наследственный переносчик в процессе наследования. Он особенно выделил, что наследование специфических признаков в организме происходит посредством неких частичек. Он назвал эти частички пангены (это было за 20 лет до предложения Йогансена назвать их эти частички генами). Для поддержки своей гипотезы о пангенах он провел серию экспериментов по скрещиванию. Для объяснения он использовал те же самые идеи о доминантности, рецессивности, сегрегации признаков и независимой их сортировке. В своих экспериментах он получил во втором поколении то же самое расщепление 3 к 1, что и Мендель. Пангены были ответственны за отсутствие волосков двух различных видов цветов. Его эксперименты вроде бы подтверждали гипотезу, что внешние черты организма наследуются так же, как если бы они кодируются отдельными частичками. Де Фриз предположил, что пангены могут проходить через специфические барьеры, что пангены переходят из одного организма в другой через физические барьеры. Сейчас это считается верным для горизонтального переноса генов.
Наконец, чтобы объединить все эти названия Йохансен (Johannsen) ввел термин ген. Это слово использовалось для единичных элементов, факторов, или аллеломорфов в гаметах. Йохансен понимал, что за словом ген в то время не стояло ничего существенного, но он считал, что слов ген имеет смысл и в реальности, особенно в рамках Менделизма. Слово "ген" возникло после слова "генетика", и означало некие гипотетические шарики диаметром несколько микрометров, в которых содержится некое неизменяемое от внешних воздействий наследственное вещество. Именно Моргану гены представлялись как шарики на бусах.
"А. Гаррод – пишет Вельков (16) – обнаружил, что алкаптонурия вызывается повреждением одного рецессивного гена и что болезнь проявляется, согласно анализу родословных, когда мутантный аллель находится в гомозиготном состоянии. Отсюда был сделан вывод, что повреждение одного гена вызывает отсутствие одной биохимической реакции. А раз биохимические реакции катализируются ферментами, то ген предопределяет наличие активного фермента. А отсюда рукой подать до вывода "один ген - один фермент". Но он был сделан только через 30 лет".
В 1940 г Дж. Бидл и Э. Татум использовали новый подход для изучения того, как гены обеспечивают метаболизм у более удобного объекта исследований - у микроскопического грибка Neurospora crassa. Ими были получены мутации, у которых отсутствовала активность того или иного фермента метаболизма. А это приводило к тому, что мутантный гриб был не способен сам синтезировать определенный метаболит (например, аминокислоту лейцин) и мог жить только тогда, когда лейцин был добавлен в питательную среду.
Сформулированная Дж.Бидлом и Э.Татумом теория "один ген - один фермент" - быстро получила широкое признание у генетиков, а сами они были награждены Нобелевской Премией.
Ещё в 1933 г. Морган заметил, что среди генетиков нет согласия насчет того, являются ли гены реалиями или это чистая фантазия. Для самого Моргана гены являлись биологическими аналогами молекул и атомов в химии и физике. Ученик Моргана Мюллер считал, что гены – основа жизни, а не только фундаментальные, но гипотетические единицы наследования.
В 1935 г. Джордж Бидл и Борис Эфрусси изучали, как мутации в генах плодовых мушек дрозофил влияют на окраску их глаз и обнаружили, что различные мутации приводят к прекращению синтеза различных предшественников в пути биосинтеза глазного пигмента. Был сделан вывод: в норме гены обеспечивают наличие ферментов, осуществляющих биохимические реакции.
Только в 1944 г. Эйвери, Мак–Леод и Мэк–Кэрти (128) доказали, что ДНК является носителем наследственной информации в пневмококках. ДНК определяла биохимическую активность пневмококков и их специфические черты. Но в то время бактериям вообще отказывалось в праве иметь наследственную информацию, так как в них нет хромосом. Более того, в то время не все были убеждены, что то же самое имеет место быть в мире растений и животных.
В начале 40-х годов появилась гипотеза о том, что один ген – один фермент (41, 132). Изучение многочисленных биохимических мутантов нейроспоры (Дж. У. Бидл и Э. Л. Тейтем, США) привело к выдвижению важного положения: "один ген — один фермент" (ныне это положение более точно формулируется так: "один ген — одна полипептидная цепь; далее я покажу, что и эта концепция оказалась ложной).
Затем было доказано, что один фермент может быть закодирован в нескольких генах, если он состоит из разных субъединиц, то есть из разных полипептидных цепей. Мы знаем, что есть гены, которые вообще не кодируют полипептидов. Это гены, кодирующие транспортные РНК (тРНК) или рибосомные РНК (рРНК), участвующие в синтезе белка.
В 1952 г. Хершей и Чейз (167) показали, что в бактериофагах белки и нуклеиновые кислоты функционируют независимо друг от друга.
В 1957 г. Крик сформулировал центральную догму генетики. Он исключил возможность обратного потока информации от белка к РНК и от РНК к ДНК. В последнем случае он оказался не прав.
В пятидесятые–шестидесятые годы прошлого века французские генетики Франсуа Жакоб, Жак Моно и Андрэ Львов обнаружили, что у кишечной палочки одна мутация может приводить к исчезновению активности сразу нескольких генов. Для того, чтобы использовать в качестве пищи молочный сахар - лактозу, E.coli применяет сразу три фермента. Была обнаружена мутация, которая находилась вне этих трех генов, но приводила к тому, что активности всех трех ферментов отсутствовали и такие мутантные клетки не могли расти на среде с лактозой.
Выяснилось, что эти три гена транскрибируются ДНК зависимой РНК полимеразой без остановок (ДНК зависимая РНК полимераза – фермент, осуществляющий синтез РНК на матрице ДНК, далее для краткости - РНК полимераза). В результате образуется единая длинная мРНК, которая кодирует все три соответствующих фермента. Джакоб и Монод (175, 176) выдвинули гипотезу оперона – батареи генов, регулируемых одним регуляторным геном. Они показали, что ген не просто функционирует. Он должен активироваться или инактивироваться. То есть для обычных генов нужны гены регуляторные.
Открытие мозаичной структуры эукариотных генов было сделано в 1977 г. группами ученых, возглавляемых американскими исследователями Ричардом Робертсом и Филиппом Шарпом. В конце 1977 г. Р. Робертс и Ф. Шарп открыли наличие интронов. За это открытие им была присуждена Нобелевская премия. Но термины интрон и экзон предложил У. Джильберт (182).
"По мнению многих – пишет Келлер (182, С. 27) – открытие того факта, что генетический материал интегрирован в клеточный метаболизм, а не существует отдельно от него, был огромным сюрпризом для генетиков 50–60–х годов". А ведь именно об этом говорил Лысенко. Никто в то время, кроме Лысенко, не думал о том, что гены стабильны лишь в динамическом смысле.
Сначала генетики считали, что гены работают постоянно и в одной и той же манере. О том, что подобная интерпретация может быть не верна, было замечено ещё Морганом. Он выдвинул гипотезу о батареях генов, которые синхронизируются в процессе развития. В 60–х годах стало ясно, что гены не работают все время – они включаются и выключаются в зависимости от специфических стимулов.
В 1969 г. Патти задался вопросом, как последовательность нуклеотидов становится геном, как молекула становится сообщением. В 1985 г. философом Р. Бурианом был поставлен вопрос о том, а что же такое ген (182). В свое время ген был провозглашен “удобным понятием”, “рабочей гипотезой” и т.п. По мнению Портина (210. С. 208), старый термин ген, полезный в начале развития генетики, уже бесполезен в современных условиях. С ним согласен У. Джелбат, который пишет, что ген более не является физическим объектом. Это более концепция, которая приобрела большое значение в прошлом, но потеряла его в настоящем. По мнению историков науки, концепция гена никогда не была единой, понятной и точно очерченной (182. С. 69).
Сейчас ставится вопрос о том, чтобы вообще убрать из молекулярной биологии термин ген (182. С. 148). Использование термина ген в настоящее время может вести к непониманию. Были попытки заменить понятие ген на понятие функциональный ген. Термин ген в течение развития генетики понимался то как структурная единица, то как функциональная единица. В первом случае он поддерживал свое существование из поколения в поколение с помощью молекулярных машин. Термин функциональная единица понимался в смысле динамического взаимодействия между ним и другими белками и нуклеиновыми кислотами и внутри всей системы. В этом смысле гены похожи на рецепт блюда, в котором доступность ингредиентов, температура приготовления, режим смены температуры определяется окружающей средой.
Согласно концепции функционального гена, нет четко фиксированного гена, его существование часто временное и непредвиденное, критически зависимое от функциональной динамики всего организма. Функциональный ген понимается в терминах динамики, поскольку биологические функции присущи белкам, а не генам, а белки всегда зависят от активности сотен других белков, а значит кодирующих их генов в старом смысле слова ген (182. С. 71). Эта формула очень похожа на то, что утверждал Лысенко.
Таков путь, которым молекулярные биологи подходили к пониманию того, что отдельных генов нет, а есть генетическая программа или программа развития. Сейчас одно стало совершенно ясно – Морган оказался не прав в определении генов, никаких таких микроскопических генов - шариков, на которых настаивал Морган, нет.
4.5. РАЗМЫТОСТЬ СОВРЕМЕННОГО ПОНЯТИЯ ГЕН
Центральной догмы молекулярной биологии первоначально записывалась как ДНК –––> ДНК –––> РНК –––> белок и гласила, что белок синтезируется только на РНК-матрице, РНК - только на матрице ДНК, а ДНК реплици-рует саму себя. Однако вскоре оказалось, что на РНК-матрице может синтезироваться ДНК (это явление называется обратной транскрипцией); кроме того, - это было ясно давно - синтез нукле-иновых кислот требует, помимо полинуклеотидной матрицы, еще и участия белков. Пусть матри-цей белок и не служит, но изменение белковых текстов способно повлечь изменение текстов и ДНК, и РНК, и самих белков (117). На транскрипцию гена влияет состояние хромосомных участков с данным геном внутри ядра. Например, ген в одной хромосоме читается, а в другой из–за её спирализации - нет. Читабельность зависит от белков ядра и цитоплазмы. В 1956 г. Бирманом было открыто (133), что строение хромосом изменяется в ходе дифференцировки тканей.
Сейчас твердо установлено, что 1) изменение относительной концентрации мРНК часто не меняет уровень синтеза. И наоборот, концентрация белка в цитоплазме может меняться независимо от концентрации мРНК; 2) изменение концентрации отдельного белка не изменяет функциональную активность органеллы; 3) изменение специфической активности белка ин витро (в пробирке) часто не отражает соответствующих изменений в соответствующих реакциях в клетке.
С одной и той же первичной мРНК может быть получено несколько тысяч вариантов зрелых мРНК. Это число варьирует от организма к организму. Однако пока до конца не ясна граница между интроном и экзоном. На первичной мРНК может быть несколько мест, с которых может начинаться зрелая мРНК, может быть несколько вариантов вырезаемых кусков. Из–за альтернативного сплайсинга могут получаться белки, у которых небольшие сегменты на концах или в центре будут отсутствовать. Такие белки называются функционально сходными изоформами одного и того же белка. В некоторых организмах мРНК может формироваться путем сплайсинга вместе (соединения в одну мРНК) экзонов из двух разных незрелых мРНК (182. С. 61).
Но даже зрелая мРНК может потом быть модифицирована путем включения нескольких дополнительных нуклеотидов или замены одного нуклеотида на другой (182. С. 61). Наиболее распространенной формой редактирования РНК у высших эукариот является превращение аденозина в инозин в двухцепочечных РНК, которое осуществляется ферментом аденозиндеаминазой. Поэтому белок может, оказывается, даже быть не записан в виде ДНК. Один ген дает сотни, тысячи вариантов белка. Миллионы генов могут дать один и тот же белок. Получается, что существуют белки без соответствующих генов. То есть один ген – много белков.
Однако догма "один ген – один фермент" тоже оказалась не верной. Если ген есть совокупность экзонов и интронов с альтернативным сплайсингом. Функция гена может реализовываться через другой ген или продукт гена, например группы крови. Кроме того, на функцию данного белка влияет сложнейшая система клеточной сигнализации, система внутриклеточного транспорта, пострансляционной модификации белков и т.д.
Многофункциональность белков – другая проблема для формальной генетики. Белок может функционировать в разных функциональных путях в зависимости от контекста (182. С. 64). В организме человека распространены белки с двумя функциями, совершенно независимыми друг от друга. Это, например, белок БАРС, который участвует в регулировании транскрипции генов и одновременно в цитоплазме участвует в функционировании белковой машины, обеспечивающей отщепление пузырьков от мембран (233).
Функция структурного или каталитического белка зависит не только от последовательности нуклеотидов, но и от окружающего генетического контекста, например, от структуры хромосомы, в которую ген попал, если хромосома в данной клетке конденсирована, то ген в одной хромосоме совсем не читается, а в другой может читаться. Если он есть в другой хромосоме, то он читается. Уровень синтеза определенного белка требует клеточной регуляции. Есть ещё вопросы, какой белок и когда синтезировать. И это зависит от того, в каком состоянии находится ДНК, нет ли метилирования цитозина?
Но и это ещё не все. Многие белки имеют перекрывающуюся функцию. Если, например, убрать из клетки белок синтаксин 5, один из белков группы СНАРЕ, то есть белков, участвующих в сближении мембран внутриклеточных мембранных органелл для их слияния между собой, то клетка выживает, так как СНАРЕ из других, ближайших, ступеней внутриклеточного транспорта ее замещают, смещаясь на место, где раньше работал синтаксин 5 (200).
Наличие интенсивного редактирования незрелой мРНК, наличие регуляторных механизмов на этапе синтеза белков, наличие посттрансляционной модификации белков резко затрудняет не только структурное, но и функциональное определение гена. Все это резко затрудняет даже определение гена как структурной единицы генома. В результате всех этих открытий ген потерял свою спецификацию и свойство хранения информации стабильность. До сих пор гены называют мозгом клетки, а это в корне не верно.
4.6. ПРОГРАММА РАЗВИТИЯ
Было обнаружено, что гены (даже в самом современном понимании) не автономны, имеется координированная программа синтеза белков и ее исполнение контролируется. ДНК сама по себе не может передавать информацию от одного поколения к другому без искажений (182. С. 145). Только 82,5% глобальной вариабельности фенотипа зависит от генотипа (243). Между тем организм с огромной точностью проходит по стадиям своего индивидуального развития и это происходит несмотря на возмущения, поступающие из внешней среды. Это цепь реакций с обратной связью и чувствованием (тестированием) окружающей среды. Стадийность развития зачастую зависит от присутствия в нужном месте и в нужное время только нескольких молекул нужного белка (182. С.105). Ещё в 1932 г. Морган задал себе вопрос – как развиваются сложнейшие многоклеточные организмы, как гены продуцируют свои эффекты? Сейчас многое, хотя и не все, стало уже известно. Как регулируется образование организма? За счет синтеза и транспорта на плазматическую мембрану специальных белков рецепторов и лигандов. Этот процесс очень сложен. Рецепторы и биология развития. Все начинается с асимметрии зиготы. Есть данные о том, что молекулы мРНК двигаются к одному полюсу яйцеклетки по цитоскелету (229).
У многоклеточных организмов большинство меток организма содержит полный набор генов, но обычно из этого набора используется крайне незначительный объем информации. Постоянно информация считывается только с тех гены, которые кодируют структурные белки и ферменты промежуточного метаболизма. Кроме этих постоянно необходимых генов имеется много других генов, активных только в определенных типах клеток, при определенных метаболических условиях или во время дифференцировки. Синтеза белка активируется по мере надобности и регуляция данного процесса чрезвычайно сложна.
В свое время я скушал доклад, сделанный в Европейской молекулярно–биологической лаборатории и в университете города Данди (Шотландия), где было показано, что короткие полипептиды–лиганды, то есть небольшие по размерам белки, содержащие сигналы для белков, которые их детектируют, то есть белков–рецепторов, после секреции во внеклеточное пространство не просто диффундируют по внеклеточному пространству, а активно захватываются и транспортируются клетками через свою цитоплазму.
Я не буду подробно описывать основные эксперименты по биологии развития, эксперименты с пересадкой конечностей, зачатков, закладок органов и т.д. Это не входит в мою задачу, а Интересующий читатель легко найдет все это в Википедии.
Боннер (136) пишет, что каждый тип специализированных клеток высших организмов содержит характерные для них ферменты, но каждая продуцирует только часть ферментов, для которых их геном содержит всю информацию Он отмечает: ясно, что ядро содержит некоторые другие механизмы, которые определяют в каких клетках и через какое время в течение развития каждый ген должен быть активирован и произвести свою мРНК, и в каких клетках каждый ген должен оставаться неактивным, подавленным. Должна быть другая информация, не только та, что заключена в ДНК и обеспечивает синтез белка для того, чтобы объяснить клеточную дифференцировку". Центральная догма молекулярной биологии описывает механизмы, обеспечивающие тот факт, что все клетки сходны, но она оставляет вопрос открытым, как клетки высших организмов становятся разными.
Голубовский (25) отмечает: "Роль, время и место действия большинства “генов-номинантов” пока совершенно неясны. Но есть и другая проблема. Под геномом надо понимать всю наследственную систему, включая не только структуру определенного набора ДНК элементов, но и характер связей между ними, который определяет ход онтогенеза в конкретных условиях среды. Налицо системная триада: элементы, связи между ними и свойства целостности. Отсюда следует важный вывод: знание структуры генов на уровне ДНК — необходимо, но вовсе недостаточно для описания генома. Мы лишь на пороге постижения динамического способа организации и неканонических форм наследования". От себя добавлю – молекулярная биология пока совершенно не представляет, что делать с тем огромным количеством деталей, касательных известных ныне молекулярных машин, с тем огромным числом открытых взаимодействий между белками.
Появление возможности использовать полную информацию о геноме привело к возникновению функциональной геномики, вместо структурной геномики. "Гены" включаются–выключаются через их взаимодействие во время эмбрионального развития. Геном включается и выключается в зависимости от самого развития, что позволяет исправлять ошибки. Новым направлением в молекулярной биологии стало использование термина генетическая программа вместо слова ген. Термин генетическая программа заимствован из области компьютерных программ. Она приравнивает генетический материал яйца магнитной записи на диске компьютера, где отражается (при выходе из программы) опыт ее использования. То есть она при каждом цикле чуть переписывается, будучи в целом одной и той же. В генетической программе равноправной или не менее существенной является генетическая и иная информация, содержащаяся в цитоплазме яйцеклетки и центриоле (особая органелла, которая постоянно находится в центре тяжести клетки) сперматозоида. Реализация генетической программы предписана ее наследственностью, подобранной во время формирования вида (207).
Ещё более точен термин "программа развития". Впервые термин "программа развития" ввел М. Аптер (цит. по 182). По его словам, гены – аналоги субпрограмм по синтезу различных белков. "Цитоплазма содержит программу, специфицирующую природу и последовательность операций, комбинирование с множеством специализированных различных форм этих событий, которые проявляются во время самого развития."
По сути, понятие "программа развития" похоже на компьютерные программы, которые восстанавливают свою работу даже, если случаются проблемы – она может удалять и исправлять случайные ошибки. Это интерактивная программа, которая отлеживает окружающую обстановку и в зависимости от окружающей ситуации включает ту или иную компенсационную программу.
Гены есть программы, которые реализуются только с участием других программ. Не может одна программа все обеспечить. Наследственная информация реализуется через взаимодействие белков, не через один белок, а через взаимодействие НЕСКОЛЬКИХ (до тысяч) белков. Поэтому прямой связи между геном и признаком не может быть даже теоретически. Любая информация, заложенная в гене, ВСЕГДА опосредуется через весь геном.
Если нет полного набора программ, то все встанет. Очень похоже на ситуацию в компьютере, когда программа обращается к программе калькулятору. Так и геном – набор компьютерных программ, которые взаимодействуют. Очень важна совместимость программ друг с другом и с цитоплазматическими факторами наследственности. Как программы для компьютеров ПС не всегда совместимы с программами для Макинтошей. Мутация ведет к ошибкам взаимодействия программ.
Программа развития формируется при слиянии яйцеклетки и сперматозоида и включает проверенную на гибридизационную совместимость нуклеиновых кислот геном, который состоит из материнской и отцовской половины, отцовской центриоли и наследственных факторов, заключенных в цитоплазме яйцеклетки. Там имеются гены митохондрий и запас белков, созданных в организме матери. Уже сама по себе яйцеклетка оказывается асимметричной.
Программа развития или генетическая программа включает в себя комплекс механизмов, по сути, весь организм, где ДНК, РНК и белки функционируют попеременно и как инструкции и как данные (182. С. 144). Набор генов приобретает свойства саморегулирующейся динамической системы, в которой ДНК предоставляет важный и абсолютно незаменимый, но сырой материал, не более (182. С. 71).
Уже Б. Мак–Клинток в своей Нобелевской лекции описала геном как очень чувствительный орган клетки, отслеживающий свою активность и корректирующий общие ошибки, чувствуя необычные и неожиданные события и реагирующий на них. Геном, как команда в футболе. Никогда не знаешь, заиграет команда из лучших игроков или нет, пока не попробуешь.
Моделирование на компьютере стало мощным инструментом для понимания программы развития. Применение инженерных принципов тоже помогает понять поведение программы развития. Например, эмбриогенез и поведение автопилота на самолете обнаруживают сходные характеристики, активность их определяется целью. В программе развития заложены инженерные принципы:
1. Положительная и отрицательная обратные связи.
2. Программа разделена на множество независимо выполняемых актов: детектирование – действие. Детектирование случайностей.
3. Имеется множество параллельных циклов работ, выполняемых одновременно.
4. Функциональная единица реагирует только на сигналы из своего ближайшего окружения.
5. Точный и множественный контроль исполнения на промежуточных стадиях.
6. Резистентность к неудачам и ошибкам.
После оплодотворения яйцеклетки зигота работает как компьютер с множеством параллельных процессоров, если один вылетел, другие замещают. Случайный поиск других программ зависит от окружения. Зона реализации программ очень узкая. Клетка просто физически не в состоянии постоянно синтезировать все 30000 генов одновременно.
Если в нужный момент компьютер выключить, а потом включить, то будет другой организм. Например, эмбрион дрозофилы развивается нормально при 20 °С. Но если температуру временно повысить до 37 °С во время самой ранней стадии куколки, то взрослая особь не будет иметь части нормального рисунка вен на своих крыльях. Если нагревание провести 24 часа позднее (по отношению к стадийности развития), то рисунок на крыльях не будет нарушен.
Без цитоплазмы яйцеклетки соматическая клетка может дать только другую соматическую клетку. В процессе дифференцировки ядро животных клеток теряет способность давать целое животное, а даёт клетки только той же самой ткани. Для возвращения соматической клетке способности стать источником информации для развития целого организма она должна быть помещена в белковое окружение, характерное для яйцеклетки. Почему? Да потому, что в ней не вся программа развития. В цитоплазме яйцеклетки содержится огромное количество белков. По–видимому, все возможные белки, которые имеет в геноме данный вид. Скорее всего, происходит как бы тестирование гибридизационной совместимости.
Развитие – это нечто более сложное, чем набор инструкций, записанных на алфавите нуклеотидов (182). Индивидуальное развитие включает три этапа, 3 части. Развитие, поддержание развитого организма, старение. Но это один процесс из 3 разных частей, заканчивающийся программированной гибелью. Если сделать программу жесткой, как в компьютере, то не будет целого организма. Огромная роль принадлежит взаимодействию генотипа со средой. Любой единичный акт поведения (физиологии или морфологии) каждого единичного организма жившего на Земле определяется взаимодействием генетической информации, сохраняемой в развивающемся организме, с окружающей средой, ее свойствами. Однако проявление некоторых признаков слабо зависит от окружающей среды, например, люди почти всегда имеют 5 пальцев на каждой руке практически при любой окружающей среде. Другие признаки более чувствительны к воздействию окружающей среды. Программа развития постоянно реагирует на основе обратной связи на то, как идет развитие. Ремоделирование и реструктурирование хроматина важно для программы развития. Программа развития содержит часть программы предыдущего организма в виде цитоплазмы яйцеклетки. Вот, например, ряд инструкций развития, которые реализуются на уровне дробящегося зародыша: 1) разделись тангенциально с одновременным ростом; 2) разделись поперек с одновременным ростом; 3) расти без деления; 4) проведи тест на величину и число клеток... Генов, персонально ответственных за эти команды, не существует.
В генетической программе равноправной и существенной является генетическая информация, содержащаяся в цитоплазме яйцеклетки и в центриоле сперматозоида, то есть женских и мужских половых клеток. В яйцеклетке, по сути, остается белковая наследственность от предыдущего животного, хотя при этом информация, записанная в ДНК, имеет определяющую роль. Без нее развитие не может быть реализовано.
Итак, развитие организма – это сумма последовательной реализации и взаимодействий многих различных генов в пространстве и времени, а шум развития – это малые вариации в признаках. В процессе развития функционирует как бы генетически переключаемая сеть, в которой, чем более общая команда подается, тем больше генов включено. И ученых ещё только предстоит узнать, как все эти инструкции реализуются и адаптируются.
4.7. КАК ИГРАЕТ ОРКЕСТР ГЕНОВ?
В виде аналогии геном, совокупность генов, например, человека, можно представить себе как большой симфонический оркестр. В нем имеется 30000 инструментов. Каждый инструмент есть аналогия последовательности нуклеотидов, остающейся в информационной РНК, после сплайсинга. Когда оркестр обучен, когда имеется прекрасный дирижер, то 30000 инструментов выдают "на-гора" чудную мелодию. Эта аналогия соответствует ситуации, когда внешняя среда является оптимальной для развития. Но если дирижер плохой или оркестранты не обучены, то чарующая музыка превращается в нечто, лишь напоминающее эту чарующую музыку.
Другой симфонический оркестр – это другой организм. В нем все те же 30000 инструментов – генов, но некоторые инструменты имеют небольшие дефекты, например кнопка на флейте западает или ещё что сломано. Если снова оркестрантов научить и поставить очень хорошего дирижера, то можно получить неплохую музыку, но уже хуже той оптимальной. Но, если оркестранты не обучены, и дирижер плохой, то музыка все еще будет напоминать оригинал, но очень и очень отдаленно.
Возьмем теперь тот же оркестр, тот да не тот. У него инструменты попорчены и изменены уже существенно, но все равно они очень и очень похожи на те оригинальные инструменты. Например, глубина вдавливания кнопок на саксофонах гораздо выше. Кроме того партитура чуть другая и инструменты адаптированы, чтобы исполнять именно эту партитуру. Хотя основная мелодия прослеживается. Но звуки совершенно не комбинируются. Это новый вид, но в пределах того же семейства, мелодии. Если ряд инструментов убран или другой ряд удвоен, да и мелодия чуть другая, то возникает третий вид. Но он тоже зависит от дирижера и оркестрантов. Но всегда набор инструментов практически одинаков.
Возможна и другая аналогия. Есть ноты в магазине. Музыка записана в нотах, но пока ее не сыграют, произведение не существует. Нотная запись в партитуре для оркестра – это мРНК. В биологии получается, что как отметила Келлер, что исполнитель музыки, той, что записана в партитуре, одновременно с исполнением переписывает партитуры - это мРНК. Звук или звуковая фраза – это белок. Ноты производят для нескольких инструментов - это ДНК. Ее делят на партитуры для каждого музыканта, удаляя ненужные куски интроны, мРНК, их уже исполняют. Белки – это звуки, но их качество зависит от инструментов.
Симфонический оркестр подбирается таким образом, чтобы он выдавал сносную мелодию, а не одни барабаны, воспроизводил бы все звуки без резонанса некоторых инструментов. Итак, в рамках данной модели все гены–инструменты почти одинаковы, а музыка существенно разнится. Никакого соответствия между "кларнет – нота "до"" нет.
О том, что концепция программы развития точнее отражает механизмы наследования, чем концепция гена, говорит и судьба овечки Долли (см. Приложение IV)
Итак, понятие гена больше не является научным, наследование определяется не каким–то особым наследственным веществом, не только последовательностями нуклеотидов, но и надгенетическими факторами. Отдельного генетического вещества нет. 1. ДНК не изолирована от клеточного метаболизма. Сама ДНК и ее компоненты метаболизируются клетками, имеются даже болезни (подагра), связанные с нарушениями метаболизма ДНК.
2. ДНК не единственное вещество, способное передавать наследственную информацию – имеет место наследование через РНК в яйцеклетке и при вегетативной гибридизации (привой – подвой, см. раздел 9.1). Кроме того имеется надгенетическое наследование, наследование через ДНК и РНК митохондрий, наследование наследование через цитоплазму: через цитоплазматические белки яйцеклетки, прионы и другие подобные типы наследования... Следовательно, прав Лысенко, а не формальные генетики.
ГЛАВА 5. ПОСТТРАНСЛЯЦИОННОЕ МОДИФИЦИРОВАНИЕ БЕЛКОВ
В данной главе, в связи с попыткой выяснить имеется ли прямая связь "ген–признак", я продолжу свое исследование вопроса, как современная молекулярная биология решает вопрос о понятии гена. Я расскажу о том, какой сложный путь проходят белки, подвергаясь химическим изменениям и приобретая правильную пространственную упаковку, уже после синтеза аминокислотной цепи, прежде чем приобрести возможность выполнять свои функции в полном объеме.
5.1. ПОСТРАНСЛЯЦИОННОЕ МОДИФИЦИРОВАНИЕ БЕЛКОВ
Синтез аминокислотной цепочки знаменует только начало всей истории получения конечного продукта. Существенными моментами экспрессии генов (проявления информации, записанной в гене, в виде ее конечного продукта – зрелого белка) являются не только посттранскрипционные модификации мРНК, но и пострансляционные (то есть происходящие уже после синтеза цепи аминокислот, постсинтетические) модификации белков. Посттрансляционные модификации белков необходимы для их полноценного функционирования. При этом осуществляются эти модификации с участием множества других белков, а значит, и кодирующих их генов (в обычном понимании слова) а они тоже могут иметь разный уровень экспрессии и могут подвергаться мутациям. Следовательно, модификации изменения РНК и белков не могут быть осуществлены без участия генома в целом.
Одни белки после синтеза остаются в цитоплазме. Белки могут полностью переноситься в просвет эндоплазматической сети и терять связь с мембраной. Эти белки называются растворимыми, то есть не связанными напрямую с липидной мембраной. Далее растворимые белки могут либо оставаться в просвете эндоплазматической сети, либо транспортироваться до соответствующих органелл по ходу секреторного транспортного пути (промежуточные органеллы, пластинчатый комплекс Гольджи, органеллы, расположенные между комплексом Гольджи и плазматической мембраной, эндосомы, лизосомы), либо доставляться к плазматической мембране для последующего выделения (секреции) во внеклеточную среду.
Белки, могут быть предназначены для выведения во внешнюю среду или для доставки в лизосомы, пластинчатый комплекс или они могут оставаться в эндоплазматическая сеть. Эти белки называются секретируемыми. Небольшая часть растворимых белков, оказывающихся в просвете эндоплазматическая сеть, являются лизосомными ферментами, они предназначены для доставки в лизосомы. Наконец, есть белки, которые остаются в просвете эндоплазматической сети. К ним относятся некоторые шапероны, белки, ответственные за правильную трехмерную упаковку белковых молекул, а также участники специализированных для эндоплазматической сети белковых агрегатов, контролирующих выход секретируемых белков и лизосомных ферментов из эндоплазматической сети.
В гранулярной эндоплазматической сети происходит и синтез экспортируемых белков, которые, встраиваясь в мембрану эндоплазматической сети, становятся интегральными (то есть встроенными в липидной бислой) мембранными белками. Мембранные белки могут быть следующих типов. Одни переносятся на митохондрии, другие остаются в эндоплазматическая сеть или транспортируются в органеллы-пероксисомы. Наконец, третья часть белков транспортируется в сторону АГ и проходит через него, направляясь либо на плазмалемму, либо в эндосомы, либо в лизосомы. Сходный путь проходят липиды, продуцируемые на цитоплазматической стороне мембран эндоплазматической сети.
Превращение линейной немодифицированной пептидной (аминокислотной) цепи в полноценный функциональный белок (созревание) осуществляется в результате многостадийного процесса, который начинается сразу же после начала трансляции и протекает либо в цитоплазме, либо в просветах эндоплазматической сети, пластинчатого комплекса Гольджи, эндосом и лизосом. Поэтому все процессы пострансляционной модификации могут быть разделены на те, что обеспечиваются белками, связанными в секреторным транспортным путем, и белками, расположенными в цитоплазме.
5.2. ПОСТРАНСЛЯЦИОННЫЕ МОДИФИКАЦИИ БЕЛКОВ ВНУТРИ ОРГАНЕЛЛ СЕКРЕТОРНОГО ТРАНСПОРТНОГО ПУТИ
В просвете органелл секреторного транспортного пути происходят следующие модификации белков: 1) отрезание небольших участков аминокислотной цепи, 2) образование дисульфидных мостиков и последующая пространственная упаковка цепочки аминокислот, 3) присоединение линкера (молекулы, которая склеивается с просветными белками) GPI (ДЖИПиАй) и других подобных соединений, 4) присоединение моносахаров с формированием полисахаридных цепочек.
1. Отрезание кусков аминокислотной цепочки является одним из наиболее общих способов посттрансляционной модификации белков. К таким участкам относятся сам сигнальный пептид, который отрезается от аминокислотной цепи растворимых белков, попавших в просвет эндоплазматической сети. Сюда же относятся пропептиды (небольшие кусочки, отрезаемые в процессе транспорта от лизосомальных ферментов и белков, секретируемых при возникновении соответствующего сигнала) у ферментов лизосом и пропептиды белков, подвергающихся секретированию под воздействием сигналов из внешней среды, а также N и С концы у проколлагенов... Зачем клетке нужно удалять тот или иной пептид на концах аминокислотной цепи? Для того, чтобы увеличить эффективность транспорта белка (см. Приложение V) или для того, чтобы увеличить эффективность его каталитической функции.
2. Свертывание белка в определенную пространственную форму имеет важнейшее значение для его функционирования. Свертывание происходит в просвете эндоплазматической сети и в цитоплазме. Правильному свертыванию помогает образование дисульфидных связей. Образование дисульфидных мостиков происходит в просвете эндоплазматической сети. Путём окисления боковых цепей цистеина образуются дисульфидные мостики, правильность положения которых контролируется протеиндисульфид-изомеразой. Пептидилпролил-изомераза контролирует в синтезируемом пептиде реакцию так называемой цис-транс-изомеризации между пролином и другими аминокислотами.
Кроме того, для того чтобы растущая полипептидная цепь могла свернуться необходимым образом, с еще линейным участком цепи временно связываются шапероны. Белки–шапероны участвуют в формировании трехмерной структуры цепочки аминокислот данного белка. Эти белки направляют процесс свертывания цепи путем подавления нежелательных побочных взаимодействий.
Когда вновь образованный белок приобретает правильную вторичную и третичную структуру он проверяется на правильность упаковки. Этот процесс реализуется также шаперонами. Например, если после начального этапа гликозилирования на концевых остатках полисахаридных цепей нет глюкозы, то шаперон не присоединяется к данному экспортируемому белку и наш белок выпускается из эндоплазматической сети.
После этого белки начинают концентрироваться в специальных местах на шероховатом эндоплазматическом ретикулуме. эти места называют выходными сайтами или выходными дверями из эндоплазматической сети. Их строение очень специфично. Они представляют собой ветвящиеся в пространстве сплетения, состоявшие из коротких трубочек и мембранных почек. Эти трубчатые сплетения содержат повышенные концентрации белков–СНАРЕ и здесь же происходит концентрация мембранных белков, идущих на экспорт вдоль секреторного пути (см. Приложение V).
3. Пришивание GPI (ДЖИПиАй) к одной из аминокислот нужно для того, чтобы потом белок связывался с определенной липидной молекулой и функционировал почти как мембранный белок. Это происходит в просвете эндоплазматической сети или пластинчатого комплекса Гольджи.
В эндоплазматической сети происходят следующие химические модификации белков: соответствующая пептидаза отщепляет сигнальный пептид. Фермент узнает точку расщепления в составе специфической N-концевой последовательности белка. Путем окисления боковых цепей цистеина образуются дисульфидные мостики, правильность положения которых контролируется протеиндисульфид-изомеразой. Специальный фермент пептидилпролил-изомераза контролирует цис-транс-изомеризацию Х-Рго-связей в синтезируемом пептиде. Трансгликозидазы переносят олигосахариды в блоке с долихолом (длинноцепочечным изопреноидом) на определенные остатки аспарагиновой кислоты в белке, тем самым осуществляя N-гликозилирование белка. Гликозидазы "подстригают" олигосахариды, отщепляя избыточные остатки глюкозы и маннозы. Для того чтобы растущая полипептидная цепь могла свернуться необходимым образом, с еще линейным участком цепи временно связываются шапероны. Эти белки направляют процесс свертывания цепи путем подавления нежелательных побочных взаимодействий. Наиболее важным шапероном, присутствующим в просвете ШЭР, является белок связывания (45).
Когда вновь образованный белок приобретает правильную вторичную и третичную структуру и остатки глюкозы удалены полностью, он перемещается в аппарат Гольджи.
В аппарате Гольджи осуществляются следующие ферментативные стадии модификации белка: фосфорилирование и отщепление с последующим переносом (перегруппировка) остатков сахаров с помощью гликозидаз и гликозилтрансфераз. Эта модификация имеет целью образование специфической олигосахаридной структуры в гликопротеинах. Наконец, в секреторных гранулах отщепляется еще один пептид, прежде чем содержимое секретируется посредством экзоцитоза. Это отщепление, катализируемое специфичными пептидазами, выполняет функцию активации секретируемого белка. Например, отщепление С-пептида (очень короткой цепочки аминокислот) от неактивного про-инсулина приводит к образованию активного гормона инсулина.
5.3. ГЛИКОЗИЛИРОВАНИЕ БЕЛКОВ И ЛИПИДОВ
В просвете мембранных органелл секреторного транспортного пути мембранные белки, также, липиды, как и растворимые, могут подвергаться различным модификациям. Наиболее характерной из них для эндоплазматической сети является первичное гликозилирование - ковалентное связывание белковой цепи со сложным олигосахаридом. В результате этого синтезирующийся белок становится гликопротеидом. Процесс присоединение моносахаров с формированием полисахаридных цепочек носит название гликозилирования белков. Гликозилирование белков обычно происходит в просвете органелл секреторного транспортного пути и редко бывает в цитоплазме.
Ферменты транс-гликозидазы переносят олигосахариды в блоке с долихолом (длинноцепочечным изопреноидом) на определенные остатки аспарагиновой кислоты в белке, тем самым осуществляя N-гликозилирование белка. Гликозидазы правильно "подстригают" олигосахариды, отщепляя избыточные остатки глюкозы и маннозы.
Растворимые и мембранные белки, попавшие в эндоплазматическую сеть подвергаются так называемому гликозилированию, то есть процессу, в результате которого к полипептидных цепочкам присоединяются цепочки полисахаридов. Эту работу совершают специальные ферменты гликозидазы и гликозилтрансферазы. Они вместе с мембранными переносчиками моносахаров, перемещающими моносахара из цитоплазмы через липидный бислой в просвет цистерн аппарата Гольджи, составляют основу белкового состава аппарата Гольджи. Олигосахаридное ядро, состоящее из 14 мономеров моносахаров, присоединяется к той части мембранного белка, которая расположена в просвете эндоплазматической сети и также ко многим гликозилируемым белкам. Ферментов гликозилирования в АГ около 200 штук (200).
Но вначале белки должны быть правильно свернуты в пространстве. Эту задачу решают специальные белки шапероны, которые в условиях высокого восстановительного или редокс–потенциала среды, созданного в просвете эндоплазматической сети, правильно свертывают белки и закрепляют свертывание путем образования двойных соединений остатков серы.
После того, как сигнальный пептид оказывается внутри просвета эндоплазматической сети он отрезается от полипептидной цепочки, следующей за сигнальным пептидом, и эта цепочка, после завершения синтеза белка на информационной РНК, оказывается свободно диффундирующей внутри просвета эндоплазматической сети. Для того, чтобы она была правильно упакована в трехмерном пространстве, существуют специальные белковые машины, так называемые шапероны (или формообразователи). Они связываются с неправильно или неполностью свернутыми в пространстве белками и не выпускают тем самым их из эндоплазматической сети, поскольку они сами взаимодействуют с резидентными, то есть постоянно расположенными в эндоплазматической сети белками. Как только секретируемый белок свертывается правильно, шаперон уже не может к нему прикрепиться, так как локусы, ответственные за это прикрепление, оказываются внутри свернутой цепочки, будучи недоступными для шаперона. Тем самым секретируемый белок оказывается доступным для других белковых машин, ответственных за выход из эндоплазматической сети.
Большинство белков, синтезированных в гранулярной эндоплазматической сети, относится к гликопротеидам. Связывание синтезирующейся белковой цепи с олигосахаридами происходит в процессе синтеза аминокислотной цепи. При этом на белковую молекулу переносится готовый блок олигосахаридов, который связывается с аспарагиновыми остатками белковой молекулы. Этот олигосахаридный комплекс содержит 2 молекулы N-ацетилгликозамина, 9 молекул маннозы и 3 молекулы глюкозы и связан со специальным липидом долихолом на внутренней поверхности мембраны эндоплазматической сети. По мере транслокации (переноса) белковой цепи во время ее синтеза, каждый аспарагиновый остаток связывается с олигосахаридным комплексом, с помощью фермента, являющегося интегральным белком мембран эндоплазматической сети. Первичной модификации, гликозилированию, подвергаются как растворимые, так и мембранные белки, синтезирующиеся в эндоплазматической сети.
В процессе О-гликозилирования происходит присоединение одного-двух углеводных остатков преимущественно к аминокислотам серину и триптофану, но иногда и по другим аминокислотным остаткам (например, по гидроперину, как это происходит в растительных белках интенсинах). В одной молекуле полипептида может быть множество участков так называемого О–гликозилирования. О-гликозилирование происходит без участия мембрано-связанного посредника. Существуют данные о том, что процесс О-гликозилирования начинается очень скоро после покидания белком эндоплазматического ретикулума, возможно, уже в промежуточных органеллах, то есть органеллах, которые располагаются на пути из эндоплазматической сети к аппарату Гольджи и продолжается, вероятно, вероятно, в нескольких отделах аппарата Гольджи.
N-гликозилирование осуществляется путем присоединения полисахаридной цепи к аминокислоте аспарагину, расположенному через один аминокислотный остаток от триптофана, и происходит постадийно. Процесс этот имеет следующие стадии.
1. Находясь в шероховатом эндоплазматическом ретикулуме, белок взаимодействует с мембрано-связанным донором олигосахаридов долихол- фосфатом, переносящим на белок слаборазветвленную олигосахаридную цепочку, состоящую из девяти остатков маннозы и трех остатков глюкозы. Эта цепочка прикрепляется к белку через два остатка N-ацетилглюкозамина.
2. В эндоплазматическом ретикулуме работают также глюкозидаза I и глюкозидаза II , которые затем удаляют остатки глюкозы от получившегося гликопротеина. Локализованный в цис-отделе аппарата Гольджи фермент маннозидаза I удаляет четыре остатка маннозы. В так называемом медиальном Гольджи работают ферменты N-ацетилглюкозамин-трансфераза-I, маннозидаза II и N-ацетилглюкозамин-трансфераза-II.
3. На транс стороне аппарата Гольджи располагаются и активно функционируют ферменты фукозилтрансфераза, галактозилтрансфераза и сиалилтрансфераза. Они завершают модификацию сахарозной цепочки, соответственно присоединяя к получившемуся гликозилированному белку моносахарид фукозу и три остатка сиаловой кислоты, то есть гликозного кольца с окисленным атомом углерода.
Важнейшее значение в регуляции посттрансляционной модификации секретируемых и мембранных белков имеют так называемые белки ферменты гликозилирования, расположенные в эндоплазматической сети и в области пластинчатого комплекса. Эти белки относятся к мембранным белкам 2 типа. Они имеют очень короткий хвост, выступающий в цитоплазму и большой участок, расположенный в просвете эндоплазматической сети и пластинчатого комплекса. Этот участок имеет ферментативную активность и именно этот свернутый в глобулу участок переносит моносахарид на цепи сахаров, прикрепленных к одной из аминокислот на цепи молекулы белка.
В аппарате Гольджи осуществляются следующие ферментативные стадии модификации белка: фосфорилирование и отщепление с последующим переносом (перегруппировка) остатков сахаров с помощью гликозидаз и гликозилтрансфераз. Эта модификация имеет целью образование специфической олигосахаридной структуры в гликопротеинах. Наконец, в мембранной тубулярной сети, расположенной на уровне транс–Гольджи отщепляется еще один пептид, прежде чем содержимое секретируется посредством экзоцитоза. Это отщепление, катализируемое специфичными пептидазами, выполняет функцию активации секретируемого белка. Например, отщепление С-пептида от неактивного про-инсулина приводит к образованию активного гормона инсулина.
Если убрать ферменты гликозилирования с помощью лекарств или с помощью модификации внешней среды, то какая–то полисахаридная цепочка будет или ингибирована или будет сверхэксперсироваться.
Если обратиться снова к аналогиям, которые я уже использовал в данной книге, то можно сказать, что во время прохода белков по транспортному внутриклеточному пути часть участков узкой магнитофонной ленты обрезается, с другой стороны, к узкой магнитофонной ленте приклеиваются куски широкой магнитофонной ленты, то есть формируется цепь, состоящая из моносахаров. Более подробное описание того, как функционирует внутриклеточный транспорт, заинтересованный читатель найдет в Приложении V.
5.4. ПОСТРАНСЛЯЦИОННЫЕ МОДИФИКАЦИИ БЕЛКОВ В ЦИТОПЛАЗМЕ
В цитоплазме белки подвергаются следующим модификациям (изменениям белковых цепей): 1) свертывание в трехмерную структуру, 2) липидизация, то есть присоединение одной или нескольких жирных кислот к аминокислотам пептидной цепи, 3) присоединение убиквинона.
1. Образование трехмерной упаковки белка в цитоплазме совершается с участием особых белков шаперонов.
2. Присоединение жирных кислот к какой-либо аминокислоте. После этого белок приобретает способность обратимо встраиваться в бислой липидов. Если таких жирных кислот пришито к белку две, то такое встраивание становится практически необратимым.
5.5. УДАЛЕНИЕ НЕИСПОЛЬЗУЕМЫХ БЕЛКОВ
Убиквитин – небольшой белок, состоящий из 76 аминокислот. Присоединение убиквитина маркирует белок, который должна разрушить протеосома - особый комплекс белков. Если белок не участвует в биохимических реакциях и не взаимодействует с другими белками, то его находит и метит специальный фермент, пришивая к нему короткий полипептид, называемый убиквитином. После присоединения нескольких таких остатков к нашему белку, данный белок захватывается протеосомой и разрезается.
Если продолжить поиск аналогий, то дело можно представить так. Если белок не используется в составе белкового комплекса, то он часто оказывается в цитоплазме один. Внутрицитоплазматическая милиция регулярно проводит рейды по отлавливанию таких одиночных белков–тунеядцев. Если внутриклеточная милиция встретит такие белки и увидит белок вне комплекса (помните рейды КГБ по магазинам при Андропове? Почему не на работе?), то ее сотрудники – ферменты, ответственные за пришивание убиквитина, приклеиваются к данному одиночному белку и совершают акт убиквитинирования. Они как бы приклеивает к тунеядцу узенькую короткую узкую магнитную ленточку убиквитина. Если таких штрафов–ленточек набирается несколько, то к белку подходит протеосома и бросает в крематорий или машину для приготовления фарша мясорубку, где его разрезают.
Недавно показано, что присоединение убиквитина к белкам митохондрий ведет к их быстрому захвату в аутофагосомы, органеллы, ответственные за переваривание других органелл,(183). Аутофагосомы являются структурами, в которые клетка сбрасывает ненужные ей или поврежденные органеллы. Эти органеллы сначала отделяются от остальной массы цитоплазмы с помощью особой мембраны, а затем полученная структура сливается с лизосомами, ферменты которых и разрушают захваченные в аутофагосомы органеллы и химические соединения. Протеосома представляет собой специализированный комплекс–агрегат из нескольких белков. Он имеет форму трубы, куда заходит меченный убиквитином белок и режется на части: на фрагменты и аминокислоты.
Итак, клетка быстро распознает те белки, которые не используются. Если белки работают, то они большую часть времени проводят в составе белковых комплексов, если белки не работают, то их, после маркирования специальной меткой, разрушает система протеосом. Если ненужные белки не убирать, то эффект будет такой же, как внедрение в геном добавочного гена или убирание одного гена из генома. Как видим, и здесь для реализации функции отдельно взятого гена требуется координированное участие сотен и тысяч других генов.
Если в качестве аналогии генома брать оркестр в целом, а в качестве аналогии белка – звуковые фразы, то посттрансляционная модификация белка аналогична прохождению звука через усилители.
Таким образом, сама по себе информация, записанная в генах (термин используется условно) не несет полной информации даже о самом белке. Она становится полной только в рамках всего генома, после обработки синтезированной полипептидной цепи другими белками и переноса полученного белка с помощью других белков в нужное для его функционирования место.
5.6. ГЕНОТИП И ФУНКЦИЯ БЕЛКОВ
Имеется разрыв между пониманием, зачастую до мелких деталей, молекулярных механизмов работы белковых машин и общим пониманием физиологии процесса наследования, процессов транспорта. За последние несколько лет они расшифровали полные последовательности ДНК геномов множества организмов. В 2009 году список живых существ, генетический паспорт которых появился у ученых, пополнили лошадь, корова, сорго, картофель и кукуруза. Само по себе клонирование и идентификация нового белка ничего не даёт. Нужно установить его функцию.
После того, как ученые расшифровали геном, то есть полную последовательность нуклеотидов во всей ДНК человека и ряда других организмов, встал вопрос, а что делать дальше. Думалось, что наличие данной информации резко ускорит развитие молекулярной биологии. На самом деле этого не произошло. А дело в том, что пока никто не знает точных механизмов работы даже отдельно взятой клетки, не говоря уже о том, как развивается во время эмбриогенеза сложнейший многоклеточный организм. Наверное, единственный крупный результат программы по расшифровке ДНК у человека – это тот факт, что теперь достаточно легко идентифицируются белки, задействованные в различных заболеваниях и при различных экспериментальных воздействиях.
Хотя геном человека в целом и расшифрован, но ещё остаётся несколько регионов, которые считаются незаконченными. Прежде всего, это центральные регионы каждой хромосомы, известные как центромеры, которые содержат большое количество повторяющихся последовательностей ДНК. Центромеры имеют длину миллионы (возможно десятки миллионов) пар нуклеотидов их сложно секвенировать (расшифровывать последовательность нуклеотидов) при помощи современных технологий. Последовательность нуклеотидов на концах линейных хромосом (в теломерах) также состоящие из повторяющихся последовательностей, и по этой причине в большинстве из 46 человеческих хромосом их расшифровка не завершена. Существующие технологические ограничения препятствуют их секвенированию. Кроме того, в геноме каждого индивидуума есть несколько локусов, которые содержат много семейств множественных генов, которые также сложно расшифровать с помощью основного на сегодняшний день метода фрагментирования ДНК. В частности, эти семейства кодируют белки, важные для иммунной системы. Кроме перечисленных регионов, остаётся ещё несколько брешей, разбросанных по всему геному, некоторые из которых довольно крупные, но есть надежда, что все они будут закрыты в ближайшие годы.
Далее, думалось, что наличие генотипа позволит быстренько найти ингибиторы белков, ответственные за развитие наследственных болезней человека и человечество получит горы лекарств от всех болезней. Но и эти мечты не сбылись. Да, белки идентифицированы, но чтобы сделать лекарство, надо знать все о том, как этот белок транспортируется и как работает в клетке, а здесь снова обнаружились проблемы. Как и в случае формальной генетики, исследователи столкнулись с догмами. Например, до сих пор любая статья о транспорте белков в клетке начинается с фразы, "как известно, белки транспортируются с помощью везикул". Но уже давно установлено, что это не верно, но ничего не меняется. Без знания механизмов транспорта и способов образования органелл в разных клетках организма создать эффективных лекарств не удастся.
Кроме того в результате расшифровки генома человека, идентифицировано несколько новых белков с неизвестной ранее функцией (156). Их быстро клонировали, то есть идентифицировали последовательность их нуклеотидов и стали изучать их функциональную роль. Но результат данного направления минимален. Каких–то прорывных открытий сделать не удалось. Следующим важным эффектом после расшифровки полного генотипа человека стало взрывное развитие такого направления в молекулярной и клеточной биологии, как поиск белков, взаимодействующих с данным исследуемым белком. Появились целые схемы таких взаимодействий. Однако пока практической и научной пользы от всех этих расшифровок мало.
Обычно под взаимодействием имеют в виду обычное электростатическое или гидрофобное склеивание белков. С помощью специальных методов были получены огромные карты схемы взаимодействия белков. И тут исследователей даже на уровне клетки ждал новый тупик. Предположим, что наш белок взаимодействует с 400 другими различными белками. Как, например, в случае с белком, ответственным за развитие муковисцидоза (см. Приложение Х). О чем это говорит? Да ни о чем, если нет точного представления о том, как работает клетка. А вот с этим сейчас большие проблемы.
5.7. ВИДЫ БЕЛКОВ С ТОЧКИ ЗРЕНИЯ МОЛЕКУЛЯРНОЙ И КЛЕТОЧНОЙ БИОЛОГИИ
Белки состоят из несколько активных функциональных единиц, соединенных цепями аминокислот, вставками, которые часто имеют значение для адекватной трехмерной упаковки белка или цепочками, которые определяют вид и совместимость наборов генов, но которые почти никак не изменяют свойства белка, если в этих участках белка заменять аминокислоты.
Белки могут быть классифицированы на основе такого признака, место их синтеза (цитоплазма или эндоплазматическая сеть), по тому, где место их основной функции (ЭР, АГ, цитоплазма, протеосомы, лизосомы...) как они синтезируются и куда потом доставляются транспортной системой клетки
Как я уже писал выше, белки синтезируются для разных целей.
1. На цитоплазматических рибосомах и полисомах синтезируются белки для нужд цитоплазмы и ядра.
2. На эндоплазматической сети синтезируются мембранные белки для внутренних нужд и для реализации связи между клетками. Там же существует синтез внутрипросветных резидентных белков для эндоплазматического сети, для аппарата Гольджи, лизосом, а также синтез и секреция белков ферментов и их помощников, синтез и секреция структурных белков матрикса и сигнальных белков
Многие белки могут быть сгруппированы в семейства – коллагены, глобины, эластины, актины, сериновые протеазы... Белки одного семейства близки как по своей функции, так и по аминокислотной последовательности. Они произошли в результате удвоения и дивергенции одного гена. Они используются разными тканями, где их функция наиболее оптимальна. Белки одного и того же типа, взятые от разных организмов, замещать друг друга. Если пересадить белок Сек13 из дрожжей человеку, то человеческие клетки будут работать нормально, конечно, если при этом не произойдет значимых гибридизационных осложнений.
Имеются белки с двойными функциями, например, белок БАРС, – повторюсь– который регулирует и интенсивность считывания генетической информации и участвует в разрушении шеек мембранных почек, что ведет к появлению мелких (52 нм в диаметре) мембранных пузырьков (233). Белки могут выполнять другую, обычно параллельную первой функцию, если субстрат другой, похожий. Или другой ионный состав цитоплазмы, то специфика действия фермента может быть изменена.
Белки могут быть классифицированы по разным параметрам.
1. Белки, ответственные за состояние многоклеточности.
А. Развитие организма.
Б. Тканевый гомеостаз, в том числе контроль за клеточным делением.
В клетке белки могут быть ответственны за следующие функции.
1. Клеточное деление
2. Синтез белков и их посттрансляционная модификация.
3. Транспорт белков
4. Цитоскелет
5. Преобразование энергии.
6. Синтез разных веществ. Белков, Липидов, сахаров, полисахаридов.
Белки могут выполнять следующие функции.
1. Белки, обеспечивающие функцию одиночных клеток
2. Белки, нужные для строительства и функционирования многоклеточного организма
1а. Белки, химически изменяющие простые, органические вещества.
1б. Белки, управляющие белками ферментами
1в. Белки, переносящие через мембрану ионы и небольшие органические ионизированные молекулы.
1г. Белки, полимеризующиеся и деполимеризующиеся (цитоскелет)
1д. Белки, синтезирующие биополимеры.
1е. Белки, режущие биополимеры.
1ё. Матриксные белки, образующие матрикс.
Как правило, вся информация о всех свойствах и поведении белка в стандартной клетке записана в последовательности его аминокислот. В последовательности аминокислот могут быть зашифрованы следующие сигналы
1. Сигнальный пептид.
2. Сигнал для входа в ядро через ядерную пору.
3. Сигнал выхода из эндоплазматической сети.
4. Сигнал форфорилирования
5. Сигнал гликозилирования (Н и О).
6. Сигнал присоединения жирной кислоты пальмитиновой и т.д. ДжиПиАй
7. Сигнал присоединения маннозо–6–фосфата.
8. Сигнал убиквитирования
9. Сигналы присоединения коатомера и клатрина.
10. Сигнал, определяющий место гидролиза ферментом протеазой.
11. Сигналы, регулирующие выход белка из эндоплазматической сети и из аппарата Гольджи.
Так вход белка в эндоплазматический ретикулум и попадание в пул секретируемых белков определяется наличием специального сигнального пептида. Позицию белков в эндоплазматической сети определяет длина трансмембранного участка и некоторые последовательности аминокислот. Так, последовательность из 4 аминокислот (лизин, аспаргиновая кислота, глутаминовая кислота и лейцин), имеющаяся на конце аминокислотной цепи белков, которые находятся в просвете эндоплазматической сети, определяет их взаимодействие с КДЕЛ рецептором и их возврат назад из аппарата Гольджи в случае их попадания в просвет цистерн аппарата Гольджи.
Последовательность из других четырех аминокислот (лизин, лизин, и две любые аминокислоты на С–конце цитоплазматического домена мембранных белков на С–конце цепи (это конец, который оканчивается атомом углерода) ККХХ определяет взаимодействие белков с белковым покрытием мембран под названием коатомер–1 и вызывает блокирование их выхода из эндоплазматической сети. Позиция белков на в аппарате Гольджи определяется длиной и строением участка их аминокислотной цепи, расположенного внутри липидного бислоя, и взаимодействием с другими ферментами гликозилирования, по типу олигомеризации, то есть, образования коротких полимеров. Позиция ферментов лизосом определяется наличием специальной последовательности аминокислот, к которой присоединяется остаток маннозо–6 фосфата. Наличие такого остатка в полисахаридной цепочке ведет к взаимодействию этого белка с рецептором маннозо–6–фосфата, который локализован в мембранной сети, расположенной после аппарата Гольджи, и затем перемешается сначала в поздние эндосомы, а потом после отщепления там от рецептора в лизосомы (см. Приложение V).
Кроме того белки могут классифицироваться с точки зрения молекулярной биологии и "проявляемости" мутаций (см. раздел 6.4). По этой классификации белки могут быть разделены на следующие группы.
1. Изогены. Тот геном, который мы имеем расшифрованным в базах данных, это геном одного какого–то человека. За счет наличия изогенов один и тот же фенотип человека может кодироваться миллионами генотипов. Возникают вопросы. Почему в базах данных белки, последовательности нуклеотидов даны в одном варианте, а не в миллионах возможных? Почему в базах данных мы практически всегда имеем дело не с миллионами вариантов последовательностей нуклеотидов, а с одной? Поэтому там не приведены миллионы возможных изогенов? Ответ прост. Миллионы лет эволюции привели к тому, что природа подобрала такие сочетания генов, которые ни в одном даже самом небольшом участке при синтезе незрелой и зрелой мРНК не дают комплементарных цепей, способных к склеиванию.
Аллельные (то есть образующие пару генов в парных хромосомах – один от отца, другой от матери) гены, кодирующие белки, можно разделить на несколько групп с точки зрения того, насколько их функция отличается друг от друга. Как я уже писал, один и тот же белок может кодироваться тысячами, а может миллионами разных генов. Это число можно подсчитывать для каждого отдельного белка. Это связано с тем, что одна и та же аминокислота может кодироваться несколькими триплетами нуклеотидов. Двумя исключениями из данного правила являются метионин и триптофан. Метионин всегда начинает аминокислотную последовательность любого белка, а тирозин обладает уникальным среди аминокислот боковой группой, имеющей форму восьмерки, которая состоит из бензольного кольца и пятичленного гетерокольца, содержащего азот. Следовательно, семейство генов, кодирующих данную цепь аминокислот, может быть представлено как связка пучков последовательностей нуклеотидов, которые сходятся в точках, где в белке расположены метионин и триптофан. Такая ситуация требует для своего обозначения специального термина. Назовем последовательности нуклеотидов, дающие при синтезе абсолютно одинаковые белки, изологичными генами или изогенами.
Тот же самый человек в других соматических клетках может иметь изогены того же самого белка, поскольку не во всех клетках синтезируются все гены. Те, которые могли бы быть подвергнуты гибридизации, могут не экспрессироваться, не синтезироваться, будучи заблокированными на уровне гетерохроматина. Поэтому, если для клонирования человека берется соматическая клетка, то очень велика вероятность того, что она будет страдать от гибридизационных осложнений транскрипции. Наличие возможной межмолекулярной гибридизации может маскироваться низким уровнем синтеза белков, которые могли бы давать феномен гибридизации с изогеном, полученным в результате мутации. Получается, что у одного и того же человека может быть миллион близнецов, которые существенно отличаются по генотипу, но абсолютно одинаковы по фенотипу.
2. Гомогены. Если мы учтем, что большинство аминокислот имеют гомологичные аминокислоты, видимо, опять за исключением метионина и триптофана, то пучки нуклеотидных последовательностей, расположенных между метионинами и триптофанами или между метионином и триптофаном будут ещё гуще. Последовательности нуклеотидов, дающие при синтезе белки, которые практически не отличаются по своей функции из–за того, что там аминокислоты заменены на свои гомологичные, гомологичными генами или гомогенами. А белки, которые получаются при синтезе из гомологичным генов или гомогенов, гомологичными белками. Другими словами, изологичные последовательности дают совершенно одинаковый белок. Гомологичные последовательности дают белки почти совершенно одинаковые по функции.
3. Дублируемые белки. Изоформы белков (232). Изоформы белков и должны быть гомоформы. Отличие в том, что это мутации с той же самой рамки считывания сплайсинга. Изоформы меняется рамка сплайсинга.
4. Незаменимые белки. Число их невелико. Так на моей памяти это белки коатомера номер один и два. После их удаления клетки обязательно гибнут.
5. Заменяемые или функционально параллельные белки – белки, которые находятся в аллельной паре, но имеют разное строение главных функциональных групп, мы назовем функционально различными изоформами, в случае, если при их образовании используется альтернативный сплайсинг, и негативно-доминантными белками, если имеется замена консервативной аминокислоты на негомологичную, что ведет к изменению функции данного белка.
5. Белки с двойной функцией. Обычно в тех, частях белков, которые выполняют определенную биологическую функцию, наиболее важные для этой функции аминокислоты оказываются очень консервативными в течение эволюции. Это обстоятельство легко распознается современными компьютерными программами, ориентированными на сравнение последовательностей нуклеотидов и аминокислот.
6. Повреждающие мутантные белки, которые блокируют функцию нормального белка.
7. Выбитые белки вследствие сдвига рамки считывания или мутаций в начальном кодоне данной рамки считывания...
8. Гибридизирующие белки (а точнее гены) – это гены, транскрипция с которых ведёт к внутримолекулярной или межмолекулярная гибридизация.
Сейчас, у нынешних организмов подавляющее большинство преобразований основаны на "приклеивании" одного белка к другому или к небольшой молекуле. При склеивании изменяется метаболическая активность белка, его каталитические (энзиматические) свойства. Обычно взаимодействия белков основаны на следующих феноменах.
1. Электростатическое склеивание.
2. Гидрофобное склеивание (минимизация свободной энергии).
3. Белки могут погружать в мембрану свои гидрофобные участки и закон минимизации свободной энергии не позволяет им отклеиться от мембраны, если там имеется гидрофобный участок.
5.8. НЕНУЖНЫЕ ГЕНЫ ИЛИ ЧТО ПОКАЗАЛИ ЭКСПЕРИМЕНТЫ С УДАЛЕНИЕМ ГЕНОВ?
В последние годы проведена масса экспериментов по удалению того или иного гена или блокирования функции данного гена. И оказалось, что имеется огромное число случаев, когда удаление или мутация отдельного гена не влияет на фенотип (182).
Из 6000 генов дрожжей только 1200 необходимо для жизни. Большинство из остальных 4800 при полном удалении не дают почти никакого фенотипа. После их удаления по отдельности клетка выживает. То есть, они могут быть компенсированы почти полностью. Как при остром воздействии – не ясно. Таких ситуаций особенно много встречается при изучении мышей. По мышам даже хотят основать специальный журнал, где можно было бы публиковать генные нокауты, то есть описания мышей, у которых с помощью генной инженерии удален тот или иной ген, но никаких проявлений отсутствия гена не обнаруживается, то есть без фенотипа (185).
Основной урок из экспериментов с удалением того или иного гена состоит в том, что нет незаменимых генов, кроме самых древних и общих, например, коатомер для животных клеток.
Исходя из данных опытов все гены (а точнее белки) могут быть разделены на следующие группы:
1. Абсолютно незаменимые – без этих генов после удаления клетки немедленно погибают или подвергаются апоптозу, самоубийству клетки. Мышиные эмбрионы после удаления данных генов гибнут. Клетки гибнут после удаление функции генов с помощью интерферирования РНК. Имеются существенные изменения после блокирования функции с помощью микроинъекции в клетку ингибирующих блокирующих антител или других подобных воздействий. Примерами могут служить коатомер–1 - у животных, коатомер–2 - у растений и дрожжей. Сар1п входит в состав белкового комплекса, который является почти не заменимым для дрожжей и растений, но заменим для животных.
2. Почти не заменимые – мышиные эмбрионы без этих генов живут эмбрионы, но плохо. Повреждения заметны после экспериментов с интерференцией РНК.
3. Частично заменимые – эмбрионы после удаления таких генов не страдают. После РНК–интерференции изменения слабые, а после микроинъекции антител – чуть заметные изменения.
4. Заменимые. Эмбрионы живут. Эффекта интерференции РНК почти нет. После антител почти нет эффекта.
Удаление кавеолина–2 у мышей вообще не влияет почти ни на что. Некоторые отклонения можно обнаружить только при сверхнагрузке. Мыши, у которых был из генотипа удален белок кавеолин–1 (это белок, который обусловливает образование мелких мембранных пузырьков на плазматической мембране синтезирующих его клеток), обнаруживали также резкое снижение концентрации другого сходного белка кавеолина–2, хотя уровень его транскрипции был не изменен. Оказалось, что кавеолин–1 и кавеолин–2 образуют комплекс друг с другом. Кавеолин–2 деградирует за счет его разрушения в протеосомах, так как ингибирование функции протеосом возвращает исходный уровень кавеолина–2 (190).
Удаление у мышей гена, кодирующего так называемый белок Прион, также не дает четко идентифицируемого фенотипа. Имеется очень небольшое изменение некоторых, казалось бы, абсолютно не связанных признаков. Например, увеличение чувствительности к гипоксии и ишемии. Напротив, если у рыбы–зебры удалить тот же ген, кодирующий белок Прион, то возникает резкое нарушение ее эмбрионального развития (143).
5.9. ВЗАИМОДЕЙСТВИЕ БЕЛКОВ
Белки можно представить в виде структур, состоящих из 2 частей. Для одной части, активной головки, природа отобрала все возможные комбинации из аминокислот, обладающие ферментной активностью для химических реакций или для стимуляции подобных реакций другими белками. Вторая часть – хвост не имеет определенной ферментной структуры. Хвосты определяют упаковку и подбор белков по видам. Хвосты определяют, подходят ли белки данному виду Активные части одинаковы почти у всех животных. Белки я предлагаю представить в виде клубков из склеенных узких магнитных лент для магнитофонов. К ним приклеены более широкие магнитные ленты для видеомагнитофонов. Это полисахаридные цепи. Магнитная лента, свернутая в клубок – это полипептидная цепь.
Большинство белков может осуществлять свою функцию только при взаимодействии с другими белками (204). При взаимодействии белки обычно приклеиваются друг к другу с помощью различных механизмов. Приклеивание к данному белку другого белка часто дает видимый эффект в виде изменения трехмерной организации изменения функциональной активности белка.
Для выполнения своей специфической функции белок нуждается во множестве партнеров. Выполнение большинства функций белки осуществляет в составе белковых комплексов, то есть они взаимодействуют с другими белками. Эти взаимодействия могут быть специфическими и неспецифическими. Кроме специфических в клетках имеется множество неспецифических взаимодействий. Например, белок СФТР, мутации в котором ведут к развитию муковисцидоза (см. Приложение Х) имеет 400 партнеров, с которыми он взаимодействует (а проще говоря, может приклеиваться).
Белки часто взаимодействуют друг с другом вроде бы случайным образом. Результатом такого взаимодействия может быть 1) образование химического соединения, 2) электростатические взаимодействия, 3) взаимодействия, которые после склеивания белков друг с другом ведут к уменьшению площади гидрофобной зоны, обращенной в водный раствор, 4) взаимодействия, ведущие к снижению энтропии.
Взаимодействия между белками довольно консервативны в эволюции и эти взаимодействия имеют функциональное значение (174). Какова функциональная роль этих взаимодействий? По сути, сейчас клеточная биология в тупике. Она не способна объяснить функциональный смысл миллионов взаимодействий белков, обнаруженных в ходе экспериментов. Тем самым, видимо, проявляется ещё один уровень "буферирования" генома (см. раздел 12.10).
Итак, посттрансляционная модификация белков вовлекает в процесс другие белки, а значит, другие гены. Идея шариков–генов не верна – есть программа развития. Без взаимодействия с другими белками информация, записанная в гене, реализована быть не может, что свидетельствует о правоте Лысенко и его последователей.