От Дмитрий Кропотов Ответить на сообщение
К Иванов (А. Гуревич) Ответить по почте
Дата 24.03.2009 10:58:59 Найти в дереве
Рубрики Прочее; Культура; Версия для печати

Бесы и демоны

Привет!

>Наша дискуссия не была бы такой утомительной, если бы вы не упрямились, а внимательно прочитали мои простые объяснения. Хотя ваше упрямство понятно: вы слишком глубоко увязли.
У меня - прямо противоположное впечатление относительно вас.

> Как теперь быть с вашими статьями о том, что непризнание Энгельсом термодинамики – следствие его выдающейся прозорливости, а "открытия" Губина - свидетельство победы философов-диалектиков над физиками-нобелевскими лауреатами?
вот только передергивать не надо. Где это я писал, что Энгельс не признавал термодинамику?

>>>Уже было сказано, что таких систем не бывает.
>>В реальности - конечно не бывает, также как и демона Максвелла.
>
>Вы уже не первый раз упоминаете этого демона. Предполагаю, что это из области "слышал звон…" Читайте, что пишут умные люди:
Вы бы кратенько указали - на какую именно мысль умных людей вы хотели указать, приведя этот отрывок?
>Я знаю, что УФН вы не читаете. Ну, так возьмите учебник Фейнмана. Там есть пример "храповик и собачка", разбирается и демон Максвелла, который назван "чертиком":

>Оказывается, что если чертик конечного размера, то сам он вскоре так нагреется, что ничего не увидит. Простейшим чертиком явится, скажем, откидная дверца с пружиной.
Это очевидный прокол Фейнмана - Губин и про это писал.
Для объяснения термодинамического эффекта здесь применяется опять же термодинамический эффект, чего вы и не увидели. Дело в том, что чертик, будучи механическим - вовсе не обязан как-то там нагреваться.
Можно предположить, например, что демон обладает знаниями обо всех траекториях и координатах частиц в сосуде - и перед быстрой частицой открывает дверку, перед медленной - не открывает. Ничего "видеть" ему не нужно - его можно запрограммировать, зная, когда какая частица к нему подлетит.

>Как говорит ваш учитель Губин: "Читайте хорошие книги!" Между тем сам он этому совету следует довольно странно: воспроизводит в своих текстах взгляды столетней давности, вновь изобретает "демонов", ловит движения отдельных молекул и получает стопроцентный КПД теплового двигателя.
Передергивания - это от слабости вашей позиции. Нечего сказать по существу - приходится напраслину возводить.

>>Но я-то предлагаю вам рассмотреть модель, мысленный эксперимент
>>Есть возражения?
>
>Возражения есть. Не хотелось повторять элементарное. Но я заметил, что не только философ Кропотов, но и физик (если только это не мистификация) Губин не понимают, что такое модель. Поэтому придется жевать хорошо известное.

>Модель детерминированного движения идеальных шариков вполне применима при анализе игры на бильярде, когда нужно проследить один-два-три последовательных ударов о борт. В этом случае небольшим неравенством углов падения и отражения можно пренебречь.
Откуда в модели возьмется неравенство углов падения и отражения?
Ведь стенки абс. упругие, также как шарики - точечные абс. упругие частицы.
Как раз и нужна модель, чтобы исключить массу несущественных моментов - типа предложенных вами неравенства углов падения и отражения
>Если же таких ударов миллионы (на самом деле и миллионов не нужно, поскольку в реальности отскоков нет, а есть адсорбция-десорбция – см. ниже), то небольшое отклонение траектории от "идеальной" приводит к такому накоплению ошибок, что ими пренебречь уже нельзя.
Т.е. вы настаиваете на том, что модельная система(в которой нет никаких отклонений от траекторий, неравных углов падений и отражений и т.д.) не будет термодинамической? Для нее неопределены будут давление, температура и т.д. в принципе?
Правильно ли я вас понял?


> Более того, положение частицы становится совершенно случайным. Именно это и приводит к "хаотизации" движения молекул и, в конечном счете, установлению термодинамического равновесия.
См.выше. Представим, что никакого случайного положения частицы нет. Будет ли для такой системы иметь смысл понятие температуры, давления, объема и т.д.?

>Вы хотите взять модель, которая не содержит в себе влияния существенных для данной задачи факторов. Ну, хорошо, берите, если очень хочется. Но помните, что не имеете права переносить результаты на реальный объект. А если не переносить, зачем нужна модель?
Модель нужна как раз для выяснения - какие факторы являются существенными, а какие -нет.
Именно для этого я вас и спрашиваю - если факторы, указанные вами как существенные - в модели выкинуть - можно ли будет для этой модели применять понятия термодинамики?
Если нет - почему?

>>Рассматриваем модельный пример, сосуд с идеальным газом. Число частиц - велико, но конечно.
>>Система задана координанатами и импульсами частиц.
>>Вопрос 1. Может ли такая система считаться термодинамической? Если нет - почему?
>
>Знаете, примитивность ваших рассуждений такова, что руки опускаются. Трудно поверить, что человек с высшим (?) образованием может писать такое. Вы даже не упоминаете о механизме взаимодействия молекул со стенками сосуда.
Давайте без оскорблений, ок? Это контрпродуктивно.
Как же не упоминаю? Абсолютно упругое соударение.

> По-видимому, вы не представляете себе ничего другого, кроме упругого отражения, по аналогии с бильярдным шаром. В действительности ничего подобного нет. Молекулы прилипают к стенке и покрывают ее одним или несколькими слоями. Адсорбция, кривая Ленгмюра, энергия активации, диффузия – вы обо всем этом слышали?
Это все для нашей модели несущественно. Я же явно указал начальные условия. Вы заявили, что в них что-то упущено, правда, голословно. Пусть так. Но ответьте относительно заявленных мной начальный условий - будет ли для такой модели применим второй закон?

>Модель должна описывать реальный объект. А у вас она что описывает?
Идеальный объект. Идеальная механическая система. Вопрос состоит в том - показать, будет ли эта система также и термодинамической, и почему.

>У Шукшина есть хороший рассказ про Моню Квасова, изобретателя вечного двигателя. Моня слышал, что вечный двигатель невозможен, но не придал этому значения. И соорудил свой, из велосипедного колеса. Поражает не невежество Мони (даже и невежества особого нет, ведь о невозможности вечного двигателя он знал), а его непроходимая глупость и самоуверенность. Он считал, что такой уровень (велосипедное колесо) – это и есть тот уровень, на котором находится наука. Ученые не додумались до колеса, а он, Моня, додумался.

>Подобно Моне и вы с Губиным отметились. Ввели уже давно изгнанный демон Максвелла и изобрели вечный двигатель второго рода.
Опять до оскорблений опускаетесь? Это контрпродуктивно.
Ответили бы лучше по-существу.

>В заключение я должен вас порадовать. Я прочитал статью Смолуховского и снимаю свои вопросы к Губину. В первом приближении я понял, что представляют собой его "открытия" и потерял интерес к этой теме.
Ну и слава богу. Все же меня нельзя будет упрекнуть, что я не пытался объяснить положение дел вам - как _добросовестному_ дилетанту.
Дилетант снял свою претензию на добросовестность :)

Дмитрий Кропотов, www.avn-chel.nm.ru