Re: Покровскому с...
>Т.е. прогрев топлива до крекинговых температур - избыточен. Можно ограничиться сравнительно низкими температурами - типа критической - около 570 К. Т.е. повышением температуры топлива в охлаждающих трубках на 300 градусов. Но пропусканием практически всего топлива через охлаждение. При быстрой циркуляции топлива и возврате его в топливный бак с передачей тепла всему объему топлива - так и происходит. В частности - в описании того же Ф-1.
Возвращение топлива в топливный бак??? "С передачей тепла всему объему топлива"??? Да ещё в описании того же Ф-1??? Нда... Станислав, где Вы такое описание нашли? Если Вы его нашли - давайте сюда. Такой бредовый агрегат точно не мог существовать, мы сразу разоблачим НАСА. :)
>У нас получилось, что все топливо необходимо нагреть до критической температуры.
Это у Вас получилось. Но эти Ваши фантазии ничего общего с реальностью не имеют. Во всех нормальных двигателях хладагент из регенеративной рубашки сразу же отправляется прямиком в КС (если он уже не находится там при плёночном охлаждении).
>Но при этом мы опустили прочие потери тепла.
>На переизлучение тепла от обратных стенок КС на элементы конструкции хвоста ракеты и далее - в пространство.
>На теплопередачу от топливного бака, трубопроводов и т.д. к элементам конструкции, охлаждаемым жидким кислородом до криогенных температур.
>На прогрев элементов конструкции КС, баков, корпуса ракеты и т.д.
>Все это в тепловом балансе позволяет уменьшить предельную температуру необходимого нагрева топлива. Ситуация несколько усложняется в конце работы двигателя в связи с уменьшением общего количества топлива в баке, но при необходимости постоянного теплосъема. Но на этот случай у нас и есть запас допустимого нагрева до температур крекинга.
>Организовать- оно, может, и безумно трудно. Но топлива хватает.
Организовать в соответствии с Вашими фантазиями - не то, что безумно трудно, а просто безумно. В здравом уме и доброй памяти никто не станет отправлять топливо из регенеративной рубашки обратно в бак.
>Она еще и в плотности потоков. И соответствующих необходимых коэффициентах теплопередачи на поверхностях теплообмена. Т.е. тепло со стенок в керосин еще надо исхитриться передать.
>А здесь у двигателя на 5000 н преимущество перед двигателем на 0.25 МПа - в 3.5 раза по удельному потоку. А перед Ф-1 - еще в 3 раза. Итого - порядок по необходимым коэффициентам теплоотдачи.
>Иначе - порядок по потребным температурным градиентам в теплопередающих металлах, и одновременно же порядок по перепадам температур между металлическими элементами(трубок, например) и теплоносителем в пристеночном пограничном слое - при равных скоростях потоков.
>Иначе - требует значительного увеличения скорости потоков керосина. - При отсутствии под рукой формул могу уверенно говорить о разах!
Лучше говорите уверенно о миллионах раз. Или квинтиллионах. Связь с реальностью будет такая же, но выглядеть будет ещё забавнее.
>>Температура же наружной оболочки камеры почти равна температуре жидкости, так как у охлаждаемых камер теплоотдача в окружающую среду ничтожна.
>Да, когда речь идет о малой энергонапряженности. Но именно ввиду высокой энергонапряженности больших камер, потребные градиенты, как я только что показал, возрастают в разы, а для Ф-1 - на порядок по сравнению с двигателем на 5000 н.
>Если, например, внутренняя стенка камеры сгорания передает тепло на внешнюю через металл при градиенте 10 градусов на мм, то для Ф-1 теплопроводность может передать удельный поток на порядок более высокий - только при градиенте 100 град/мм или при использовании более высокотеплопроводящего материала.
Внутренняя стенка не передаёт тепло на внешнюю через металл. Вообще. Ни при каком градиенте. Она передаёт через регенеративную рубашку, через хладагент.